# Learning with Admixture: Modeling, Optimization, and Applications in Population Genetics

PhD Student: Jade Y. Cheng

Main supervisor: Dr. Thomas Mailund

Co-supervisor: Dr. Christian N. S. Pedersen

Main institution: Bioinformatics Research Centre,

Department of Computer Science,

Aarhus University, Denmark

Visiting supervisor: Dr. Rasmus Nielsen

Visiting institution: Center for Theoretical Evolutionary Genomics,

Genetics and Statistics,

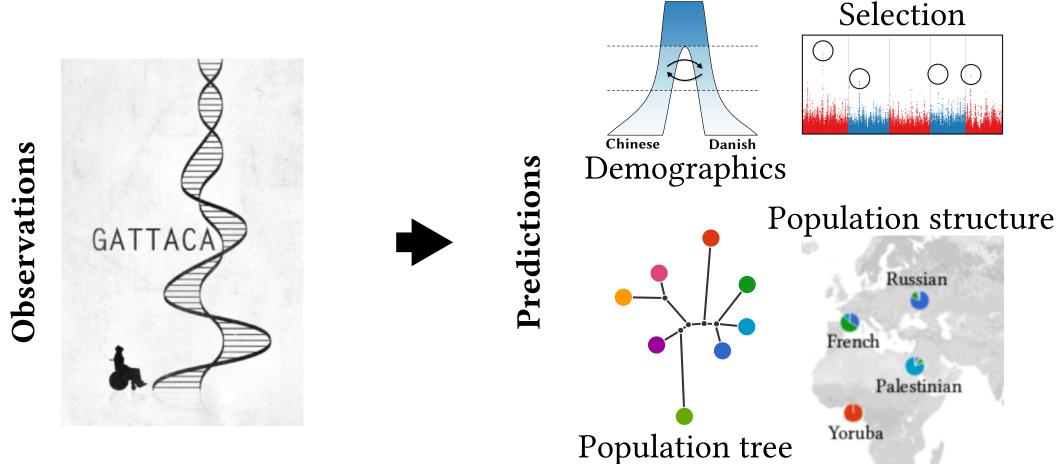
University of California, Berkeley, USA



## **Population Genetics**

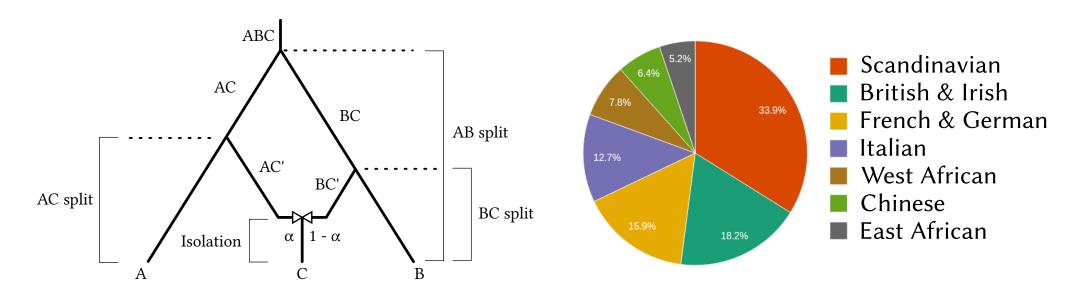
A branch of applied mathematics

A translation of scientific **observations** into mathematical models To produce quantitative **predictions** about evolution



#### Admixture

Admixture, gene flow, and hybridization Important forces in shaping evolutionary history



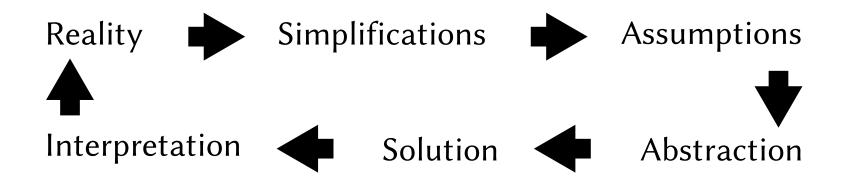
Admixture event

Admixture proportions



# **Modeling and Optimization**

A mathematical model is an abstraction that describes portions of reality It is expressed in the language of mathematics



Numerical optimization finds values of variables that optimize an objective No universal algorithm, each is designed for a particular type of problem

|     | Emphasis of this dissertation |
|-----|-------------------------------|
| VS. | Continuous optimization       |
| VS. | Deterministic optimization    |
| VS. | Constraint optimization       |
|     | VS.                           |



## Project history and me

#### CoalHMM

The development of CoalHMM at BiRC dates back to 2007.

I joined Dr. Thomas Mailund's development team in early 2014.

I have mainly contributed in two directions:

- 1. Optimization through heuristic-based evolutionary algorithms
- 2. Modeling and inferring historical admixture events

#### Ohana

Ohana started at UC Berkeley with Dr. Rasmus Nielsen, early 2015.

I named the project Ohana, meaning "family" in Hawaiian.

I am the main contributor for all methods and software modules:

- 1. Admixture inference
- 2. Evolutionary tree estimation
- 3. Selection identification



#### **Publications**

#### CoalHMM

**Jade Yu Cheng** and Thomas Mailund. 2015 "Ancestral population genomics using coalescence hidden Markov models and heuristic optimisation algorithms" *Computational Biology and Chemistry*, 57, pp.80-92

**Jade Yu Cheng** and Thomas Mailund. 2016 "A coalescent hidden Markov model for inferring admixture relationships" in preparation

Tianying Lan, **Jade Yu Cheng**, Aakrosh Ratan, Webb Miller, Stephan C. Schuster, Karyn Rode, Todd Atwood, Sean Farley, Dick Richard T. Shideler, Sandra L. Talbot, Thomas Mailund, Charlotte Lindqvist. 2016 "Genome-wide evidence for a hybrid origin of modern polar bears" *bioRxiv*, *p.047498* 

#### Ohana

**Jade Yu Cheng**, Thomas Mailund, and Rasmus Nielsen. 2016 "Ohana, a tool set for population genetic analyses of admixture components" *bioRxiv*, *p.071233*, *submitted to Bioinformatics* 

Anna-Sapfo Malaspinas, Michael C Westaway, Craig Muller, Vitor C Sousa, Oscar Lao, Isabel Alves, Anders Bergström, Georgios Athanasiadis, **Jade Y Cheng**, ..., Eske Willerslev. 2016 "The genomic history of Australia" *Nature*, doi:10.1038/nature18299

Georgios Athanasiadis, **Jade Yu Cheng**, Bjarni J. Vilhjálmsson, Frank Grønlund Jørgensen, Thomas D. Als, Stephanie Le Hellard, Thomas Espeseth, Patrick F. Sullivan, Christina M. Hultman, Peter Kjærgaard, Mikkel Heide Schierup, Thomas Mailund. 2016 "Nationwide genomic study in Denmark reveals remarkable population homogeneity" *to appear in Genetics* 

## **Admixture CoalHMM**



#### Introduction to CoalHMM

Model: Hidden Markov model

Foundation: Coalescence theory

Key assumption: Local genealogy is Markovian along the alignment

Parametrized: All forms of gene flow

Population splits

Coalescent rate

Recombination rate

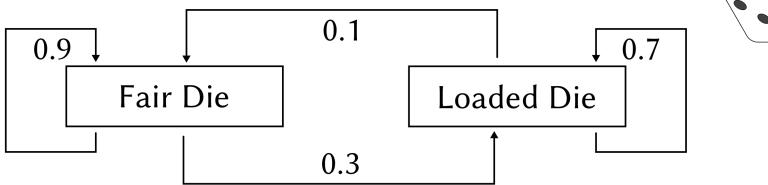
Similar methods: PSMC leads the way in popularity

Complexity: Exponential as samples increase



## **HMM Example**

#### The Occasionally Dishonest Casino:





#### Observations:

124552646214614613613666166466163661636615115146123562344

#### Questions:

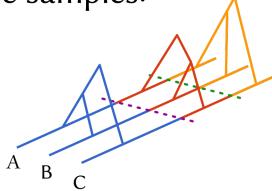
How likely is this sequence, given the model, i.e. how they cheat? How "loaded" is the loaded die? How often does the die change? What portion of the sequence was generated with each die?

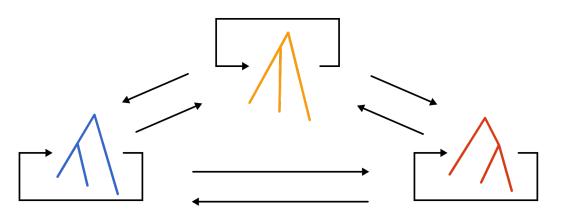
Reference: Machine Learning 10-701/15-781, Computer Science, Carnegie Mellon University



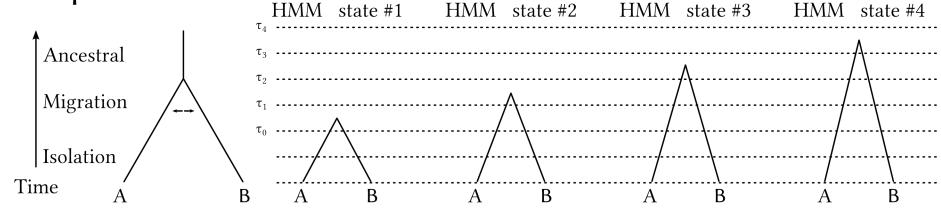
#### CoalHMM-HMM

Three samples:





Two samples:



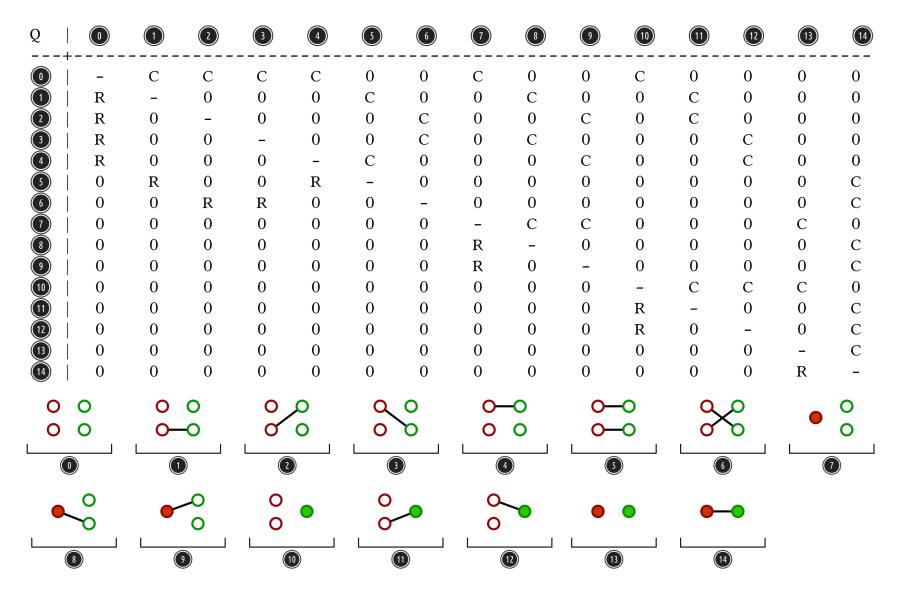
Observations: ACT-ACTGACTTGACTGACTTGACTGACTGACTGACG--CTGG... ACTGACTGACTTGACTG-CTTGTCTGACTAGACTGACGAGGAGG...

 $\rightarrow$  0002000000000000020000100100000000000221100...



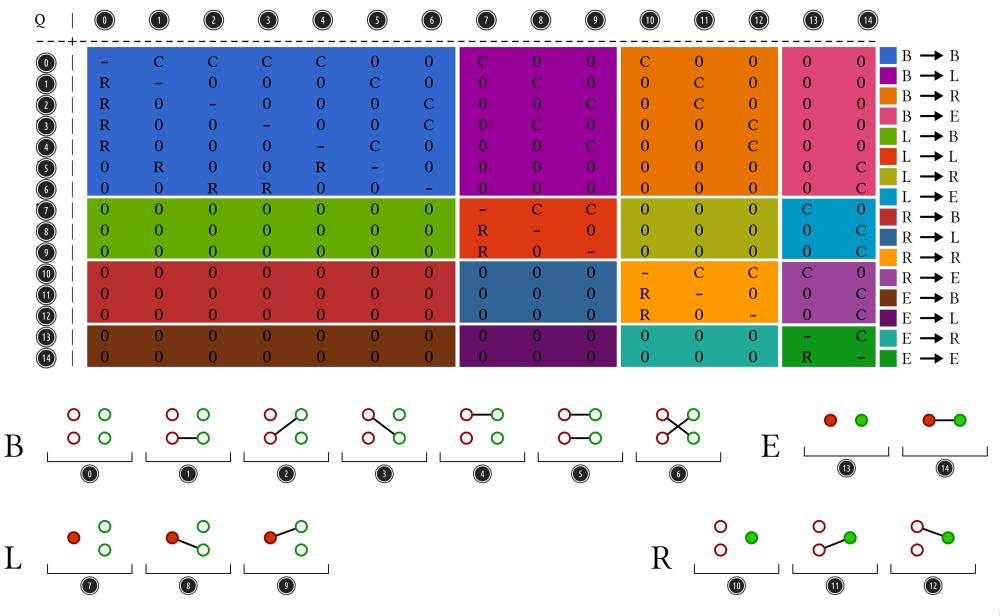
#### CoalHMM—CTMC

Markovian along the alignment, so only consider two adjacent nucleotides





## **CoalHMM—Joint Probability**



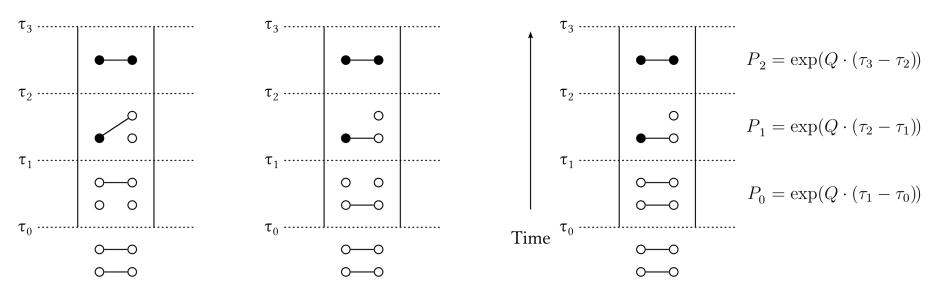


# **CoalHMM—Joint Probability**

$$J_{ij} = \begin{cases} \sum_{\alpha} \sum_{\beta} M_{\alpha\beta} & \text{when } i \leq j \\ J_{ji} & \text{when } i > j \end{cases}$$

$$M_{ij} = \begin{cases} (P_0)_{0B} \times \dots \times (P_{i-1})_{BB} \times (P_i)_{BL} \times (P_{i+1})_{LL} \times \dots \times (P_{j-1})_{LL} \times (P_j)_{LE} & \text{when } i < j \\ (P_0)_{0B} \times (P_1)_{BB} \times \dots \times (P_{i-1})_{BB} \times (P_i)_{BE} & \text{when } i = j \end{cases}$$

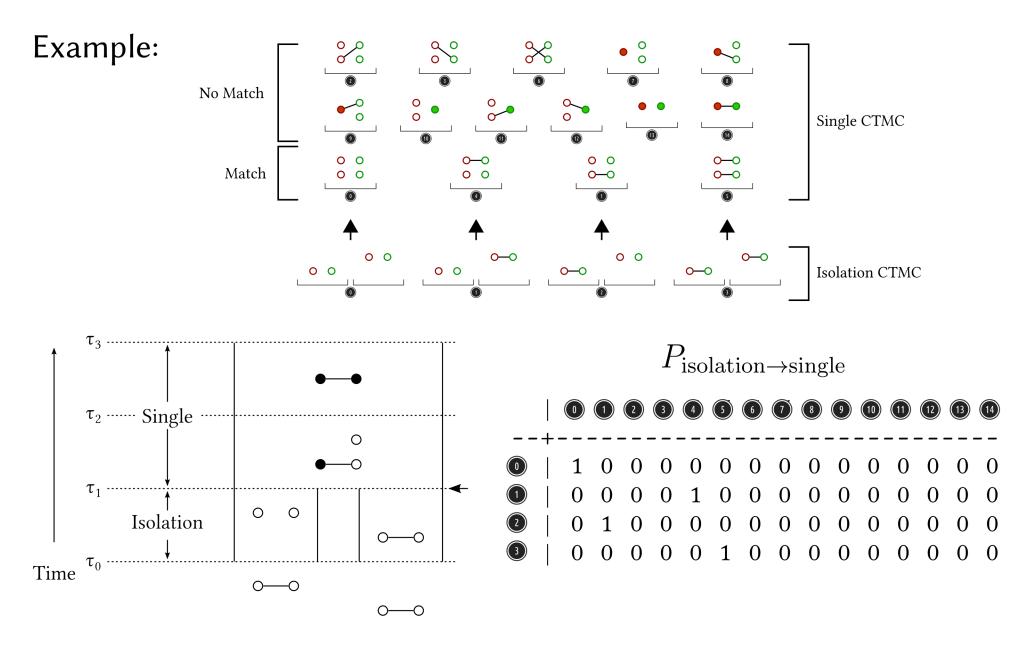
#### Example:



$$J_{23} = \sum_{\alpha} \sum_{\beta} ((P_0)_{0B} \times (P_1)_{BL} \times (P_2)_{LE})_{\alpha\beta}$$



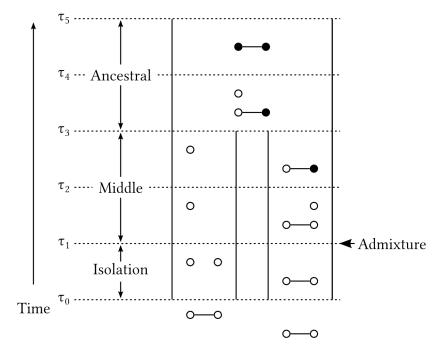
# **CoalHMM—CTMC Projection**





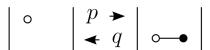
## CoalHMM—Admixture

#### Example:



#### Source state:

a. 
$$\{1, (\{1\}, \{\})\}\ \{2, (\{2\}, \{1, 2\})\}\$$



#### Destination states:

a. 
$$\{1, (\{1\}, \{\})\}\ \{2, (\{2\}, \{1, 2\})\}\$$

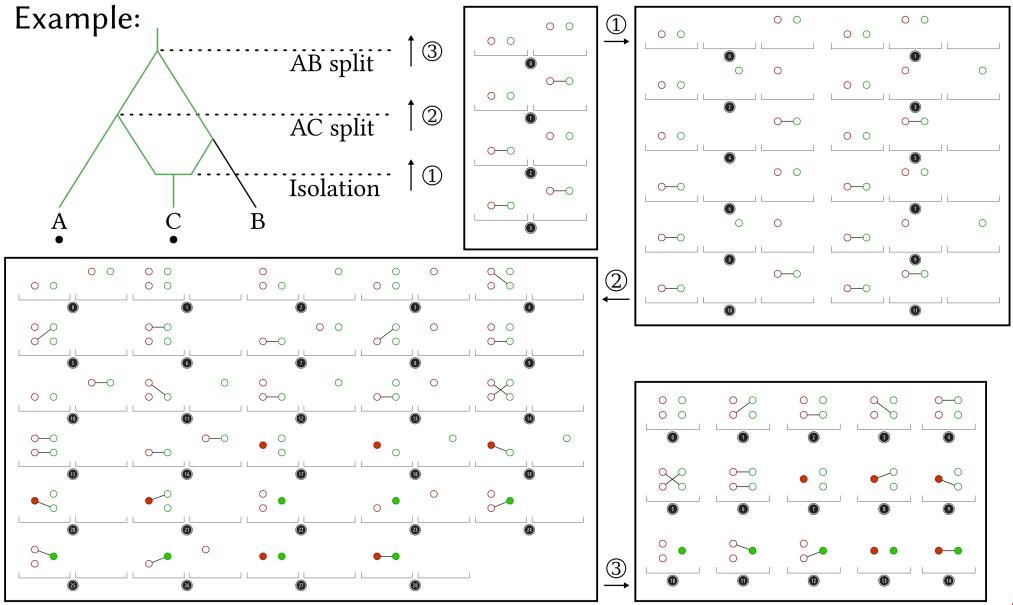
b. 
$$\{1, (\{1\}, \{\})\}\ \{1, (\{2\}, \{1, 2\})\}$$

d. 
$$\{2, (\{1\}, \{\})\}\ \{1, (\{2\}, \{1, 2\})\}\$$

|          | 0 |
|----------|---|
| <b>○</b> |   |

| binary index | pieces                              | destination | probability        |
|--------------|-------------------------------------|-------------|--------------------|
| 00           | nobody moves                        | a           | $(1-p)\cdot (1-q)$ |
| 01           | left piece stays; right piece moves | b           | $(1-p)\cdot q$     |
| 10           | left piece moves; right piece stays | C           | $p \cdot (1-q)$    |
| 11           | both pieces move                    | d           | $p \cdot q$        |

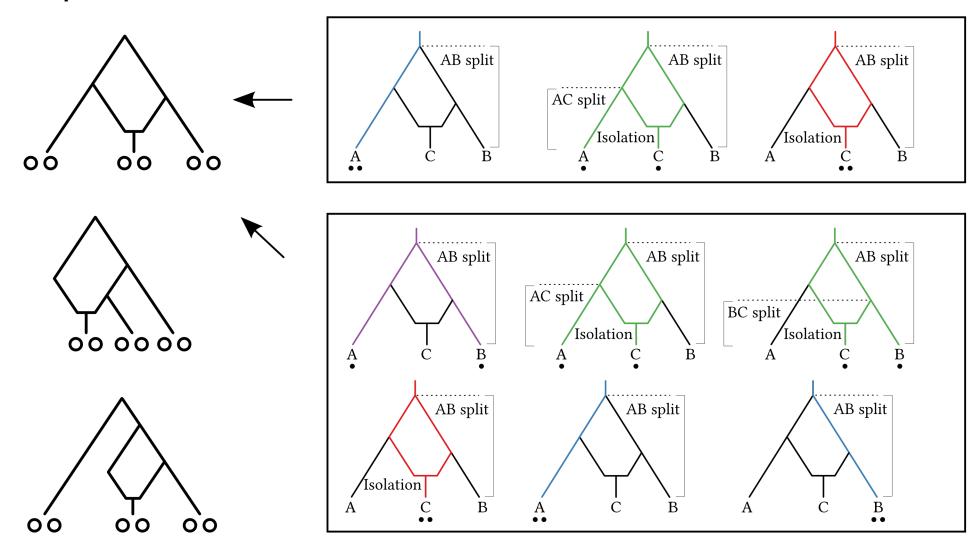
## CoalHMM—HMM





## CoalHMM—Composite Likelihood

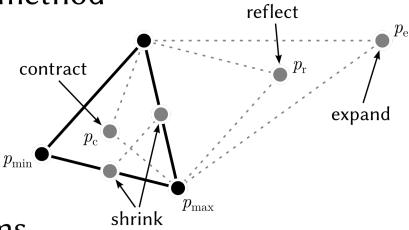
#### Example:





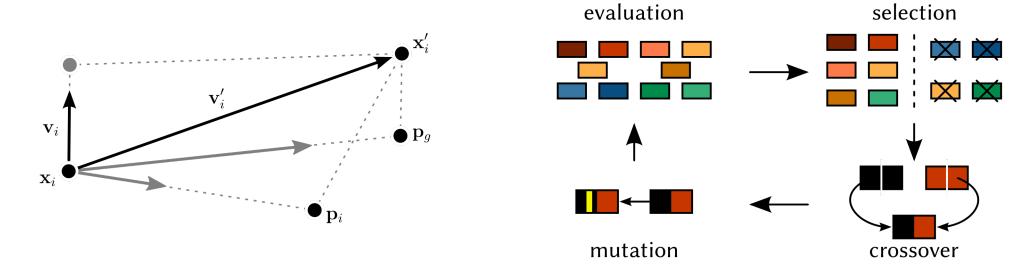
# CoalHMM—Optimization

Nelder-Mead simplex method



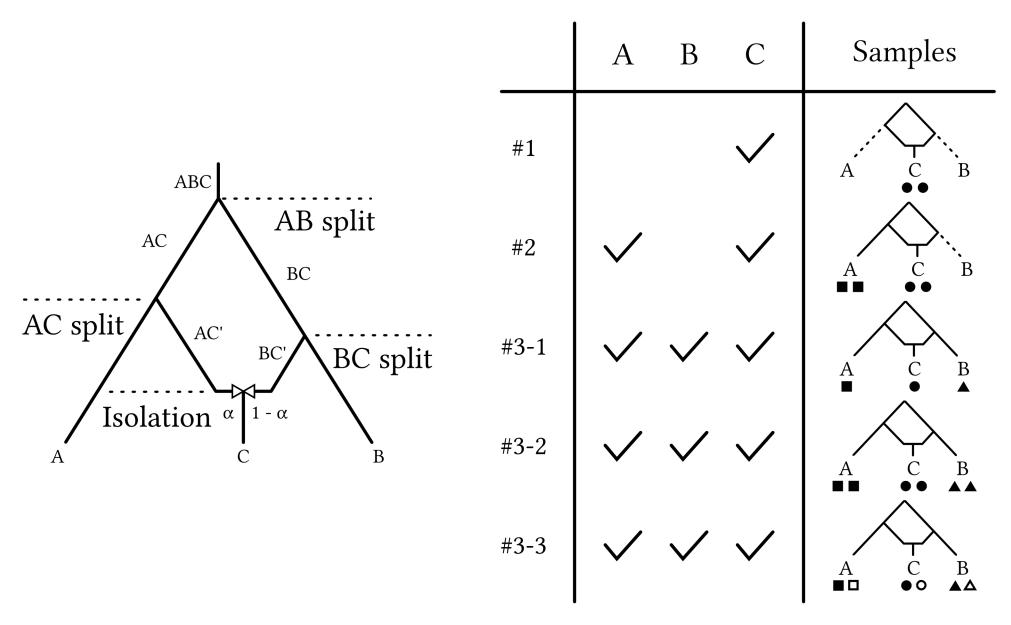
**Evolutionary algorithms** 

Particle swarm optimization (left) and Genetic algorithm (right)



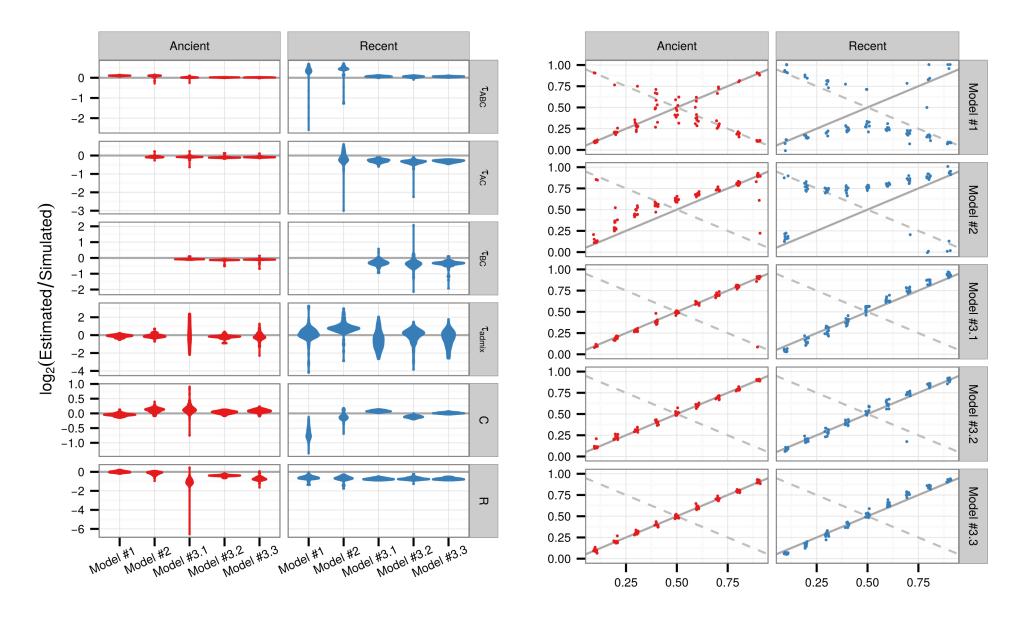


## CoalHMM—Simulation





## CoalHMM—Simulation





# Ohana



#### Introduction to Ohana

Admixture module:

Model: Classical Structure model, Unsupervised learning

Optimization: Sequential quadratic programming

Active Set algorithm

Complementarity Pivoting algorithm

Evolutionary tree module:

Model: Gaussian approximation

Optimization: Nelder-Mead simplex optimization

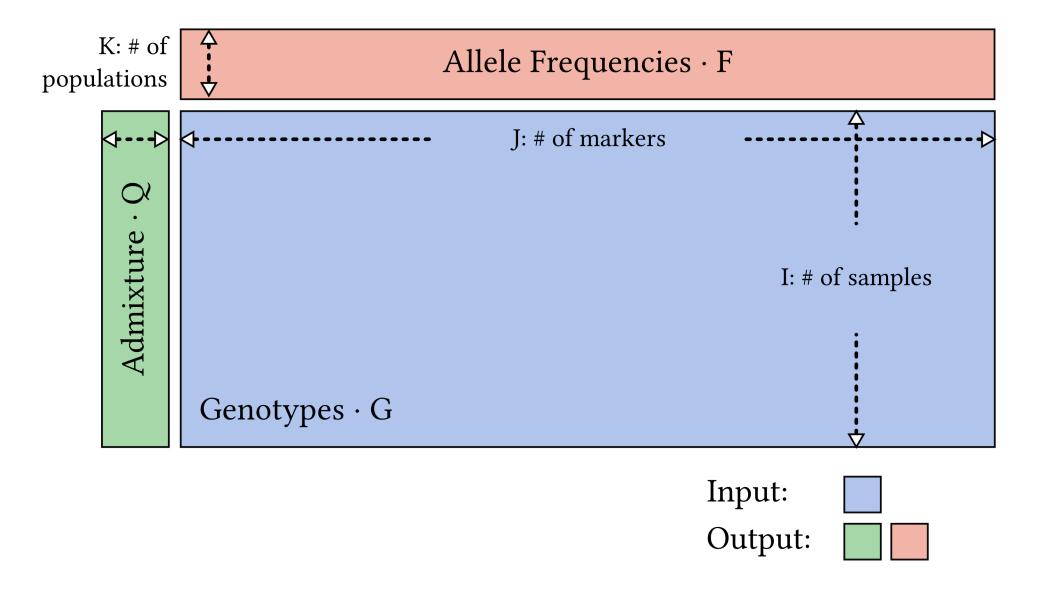
Selection module:

Model: Nested likelihood models

Optimization: Nelder-Mead simplex optimization

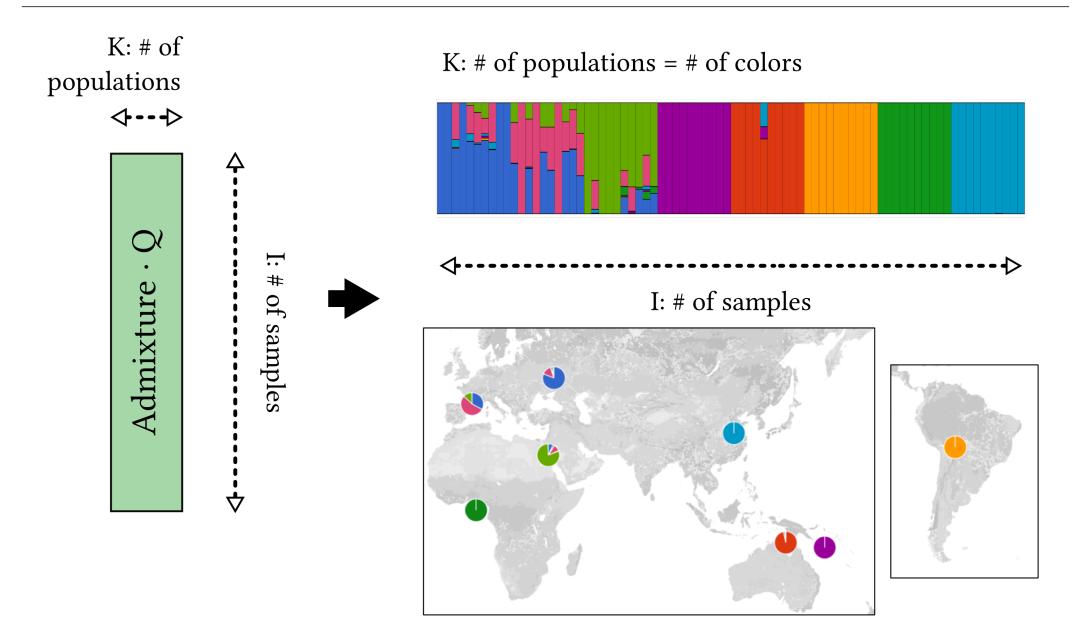


## Introduction to Ohana—Data





## Introduction to Ohana—Admixture





## Ohana-Structure Model

#### Genotype observations

$$\ln [P_1^O(Q, F)] = \sum_{i=1}^{I} \sum_{j=1}^{J} [g_{ij} \cdot \ln (A_{ij}) + (2 - g_{ij}) \cdot \ln (B_{ij})]$$

#### Genotype likelihoods

$$P_{1}^{L}(Q, F) = \sum_{g} \left[ Pr(X \mid g) \cdot Pr(g \mid Q, F) \right]$$

$$A_{ij} = \sum_{k}^{K} q_{ik} \cdot f_{kj}$$

$$Pr(X_{ij} \mid g_{ij}) = \begin{cases} g_{ij}^{AA} & \text{for } AA \\ g_{ij}^{Aa} & \text{for } Aa \text{ or } aA \\ g_{ij}^{aa} & \text{for } aa \end{cases}$$

$$B_{ij} = \sum_{k}^{K} q_{ik} \cdot (1 - f_{kj})$$

$$\ln \left[ P_1^L (Q, F) \right] = \sum_{i=1}^{I} \sum_{j=1}^{J} \ln \left( g_{ij}^{AA} \cdot A_{ij}^2 + g_{ij}^{aa} B_{ij}^2 + g_{ij}^{Aa} \cdot 2A_{ij} B_{ij} \right)$$



## Ohana—Optimization

#### Quadratic Programming and Newton's update

$$\frac{1}{2}\bar{x}^{T}Q\bar{x} + c^{T}\bar{x}$$

$$F_{T}(x_{n} + \Delta x) = F(x_{n}) + F'(x_{n})\Delta x + \frac{1}{2}F''(x_{n})\Delta x^{2}$$

#### Sequential Quadratic Programming

$$\ln \left[ P_1^O(Q, F) \right] = \sum_{i}^{I} \sum_{j}^{J} \left[ g_{ij} \cdot \ln \left( A_{ij} \right) + (2 - g_{ij}) \cdot \ln \left( B_{ij} \right) \right]$$

$$\ln \left[ P_1^L(Q, F) \right] = \sum_{i}^{I} \sum_{j}^{J} \ln \left( g_{ij}^{AA} \cdot A_{ij}^2 + g_{ij}^{aa} B_{ij}^2 + g_{ij}^{Aa} \cdot 2A_{ij} B_{ij} \right)$$

#### Equality and inequality constraints

$$F \rightarrow \forall \Delta f_{kj}, \ f_{kj} + \Delta f_{kj} \in [0, \ 1]$$

$$Q \rightarrow \begin{matrix} \forall \Delta q_{ik}, \ q_{ik} + \Delta q_{ik} \in [0, \ 1] \\ \forall \Delta q_{ik}, \ \sum_{k}^{K} \Delta q_{ik} = 0 \end{matrix} \quad \therefore \sum_{k}^{K} q_{ik} = 1$$



## Ohana—Optimization

Derivatives of the objective  $P_1^O$  with respect to admixture proportions

$$\frac{\partial \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial q_{ik}} = \sum_{j}^{J} \left[ \frac{g_{ij} \cdot f_{kj}}{\sum_{m}^{K} q_{im} \cdot f_{mj}} + \frac{(2 - g_{ij}) \cdot (1 - f_{kj})}{\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})} \right] \\
\frac{\partial^{2} \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial q_{ik} \partial q_{i'k'}} = \begin{cases}
\sum_{j}^{J} \left\{ \frac{g_{ij} \cdot f_{kj} \cdot f_{k'j}}{\left(\sum_{m}^{K} q_{im} \cdot f_{mj}\right)^{2}} + \frac{(2 - g_{ij}) \cdot (1 - f_{kj}) \cdot (1 - f_{k'j})}{\left[\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})\right]^{2}} \right\} & \text{if } i = i' \\
0 & \text{if } i = i'
\end{cases}$$

Derivatives of the objective  $P_1^O$  with respect to allele frequencies

$$\frac{\partial \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial f_{kj}} = \sum_{i}^{I} \left[\frac{g_{ij} \cdot q_{ik}}{\sum_{m}^{K} q_{im} \cdot f_{mj}} - \frac{(2 - g_{ij}) \cdot q_{ik}}{\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})}\right]$$

$$\frac{\partial^{2} \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial f_{kj} \partial f_{k'j'}} = \begin{cases}
\sum_{j}^{J} \left\{\frac{g_{ij} \cdot q_{ik} \cdot q_{ik'}}{\left(\sum_{m}^{K} q_{im} \cdot f_{mj}\right)^{2}} + \frac{(2 - g_{ij}) \cdot q_{ik} \cdot q_{ik'}}{\left[\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})\right]^{2}}\right\} & \text{if } j = j' \\
0 & \text{if } j \neq j'
\end{cases}$$



## Ohana—Optimization

Derivatives of the objective  $P_1^L$  with respect to admixture proportions

$$\frac{\partial \left(\ln \left[P_1^L\left(Q, F\right)\right]\right)}{\partial q_{ik}} = \sum_{j}^{J} \left[\frac{G_Q\left(i, j, k\right)}{F\left(i, j\right)}\right]$$

$$\frac{\partial^2 \left( \ln \left[ P_1^L \left( Q, F \right) \right] \right)}{\partial q_{ik} \partial q_{i'k'}} = \begin{cases} \sum_j^J \left[ \frac{F(i,j) \cdot H_Q(i,j,k,k') - G_Q(i,j,k) \cdot G_Q(i,j,k')}{F^2(i,j)} \right] & \text{if } i = i' \\ 0 & \text{if } i \neq i' \end{cases}$$

Derivatives of the objective  $P_1^L$  with respect to allele frequencies

$$\frac{\partial \left(\ln \left[P_1^L\left(Q, F\right)\right]\right)}{\partial f_{kj}} = \sum_{i}^{I} \left[\frac{G_F\left(i, j, k\right)}{F\left(i, j\right)}\right]$$

$$\frac{\partial^2 \left( \ln \left[ P_1^L \left( Q, F \right) \right] \right)}{df_{kj} df_{k'j'}} = \begin{cases} \sum_{i}^{I} \left[ \frac{F(i,j) \cdot H_F(i,j,k,k') - G_F(i,j,k) \cdot G_F(i,j,k')}{F^2(i,j)} \right] & \text{if } j = j' \\ 0 & \text{if } j \neq j' \end{cases}$$



## Ohana—Optimization with Block Structure

Rather than solving the full system  $\Theta(I^2K^2 \cdot (I + 2IK) + J^2K^2 \cdot 2JK) = \Theta(J^3K^3)$ 

#### Example:

$$H_Q = \begin{bmatrix} * & * & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 & 0 \\ 0 & 0 & * & * & 0 & 0 \\ 0 & 0 & * & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \end{bmatrix}$$

$$D_Q = [ * * * * * * *]$$

$$D_Q = [* * * * * * *]$$
  $D_F = [* * * * * * * *]$ 

... we handle a collection of small operations  $\Theta(IK^2 \cdot (I+2K) + JK^2 \cdot 2K) = \Theta(JK^3)$ 

$$H_{Q_i} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$
  $H_{F_j} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$   $D_{Q_i} = \begin{bmatrix} * & * \end{bmatrix}$   $D_{F_j} = \begin{bmatrix} * & * \end{bmatrix}$ 



# Ohana—QP Active Set Algorithm

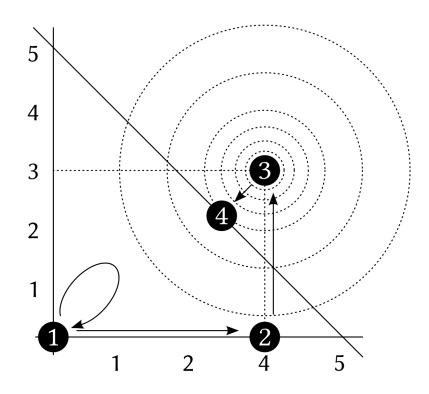
#### Concreate example:

$$\min_{x} \left\{ x^2 + y^2 - 8x - 6y \right\}$$
s.t.  $-x \le 0$ 
 $-y \le 0$ 
 $x + y \le 5$ 

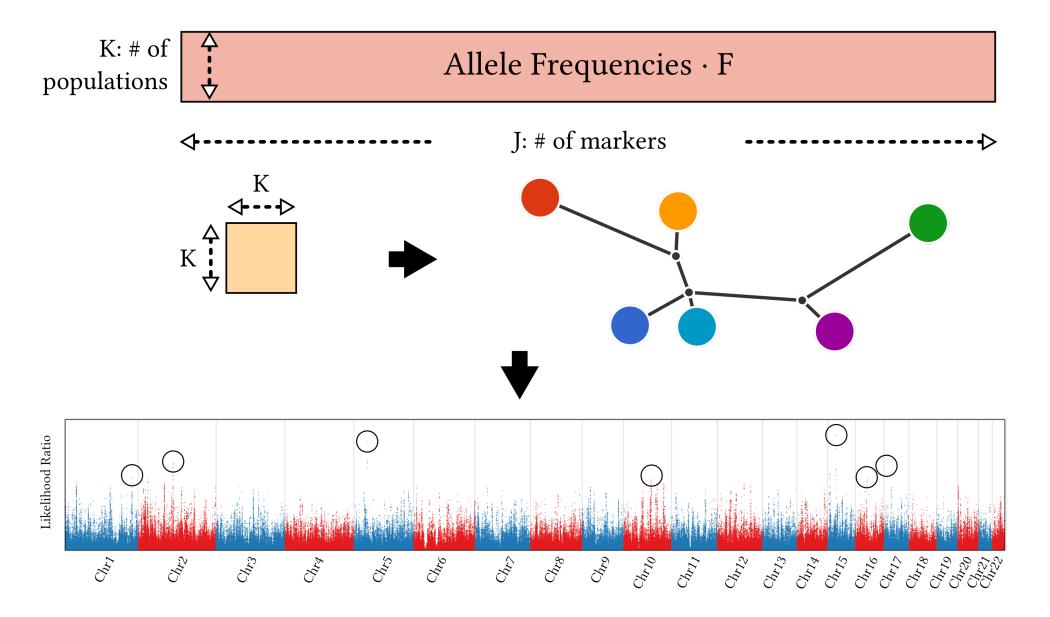
$$H = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$D = \begin{bmatrix} -8 \\ -6 \end{bmatrix}$$

$$\min_{x} \left\{ \frac{1}{2} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -8 \\ -6 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \right\}$$



#### Introduction to Ohana—Tree and Selection





## Ohana—Gaussian approximation

Joint distribution of allele frequencies as a multivariate Gaussian

$$P(f_j \mid \Omega, \mu_j) \sim \mathcal{N}(\mu_j, \mu_j (1 - \mu_j) \Omega)$$

$$\ln [P_2(F)] = -\frac{1}{2} \cdot \sum_{j=1}^{J} \left\{ K \cdot \ln (2\pi c_j) + \ln [\det (\Omega)] + \frac{1}{c_j} \cdot (f_j - \mu_j)^T \Omega^{-1} (f_j - \mu_j) \right\}$$

Root all populations at an arbitrarily chosen population

$$\ln [P_2(F)] = -\frac{1}{2} \cdot \sum_{j=1}^{J} \left\{ (K-1) \cdot \ln (2\pi c_j) + \ln [\det (\Omega')] + \frac{1}{c_j} \cdot f_j'^T \cdot \Omega'^{-1} \cdot f_j' \right\}$$

where 
$$c_j = \mu_j (1 - \mu_j)$$

$$f_j' = f_j - f_{j_0}$$



## Ohana—Phylogenetic Tree Estimation

3 3 0.33 0.22 0.16 0.22 0.56 0.15 0.16 0.15 0.24



Step #1: the rooted covariance matrix estimated for 4 populations

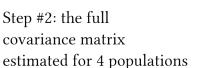
 4 4

 0.00 0.00 0.00 0.00

 0.00 0.33 0.22 0.16

 0.00 0.22 0.56 0.15

 0.00 0.16 0.15 0.24





A 0.00 0.33 0.56 0.24 B 0.33 0.00 0.45 0.25 C 0.56 0.45 0.00 0.50 D 0.24 0.25 0.50 0.00

Step #3 the distance matrix in PHYLIP format, calculated from the full covariance matrix



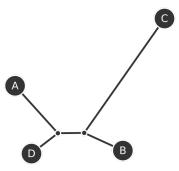
convert cov2nwk

(A:0.157667, (C:0.345000, B:0.105000):0.065000, D:0.082333);

Step #4: the phylogenetic tree constructed from the distance matrix



convert nwk2svg
or the following service for even better quality graphics
http://www.jade-cheng.com/graphs/



Step #5: visualization of the phylogenetic tree



## Ohana-Selection

Selection increases the variance among populations.

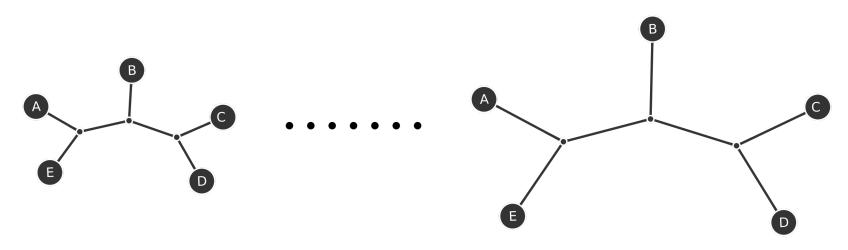
Test each marker if it favors a larger variance.

Similar information as FST-based selection methods, but unsupervised.

$$P(f_{j} \mid \Omega, \ \mu_{j}) \sim \mathcal{N}(\mu_{j}, \ \mu_{j} (1 - \mu_{j}) \Omega)$$

$$\ln [P_{2}(F)] = -\frac{1}{2} \cdot \sum_{j}^{J} \left\{ K \cdot \ln (2\pi c_{j}) + \ln \left[\det (\Omega)\right] + \frac{1}{c_{j}} \cdot (f_{j} - \mu_{j})^{T} \Omega^{-1} (f_{j} - \mu_{j}) \right\}$$

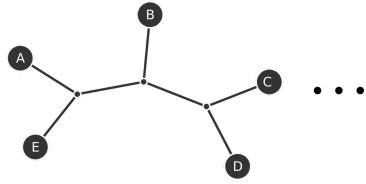
Example: scaling factor applied to the entire covariance structure.





## Ohana-Selection

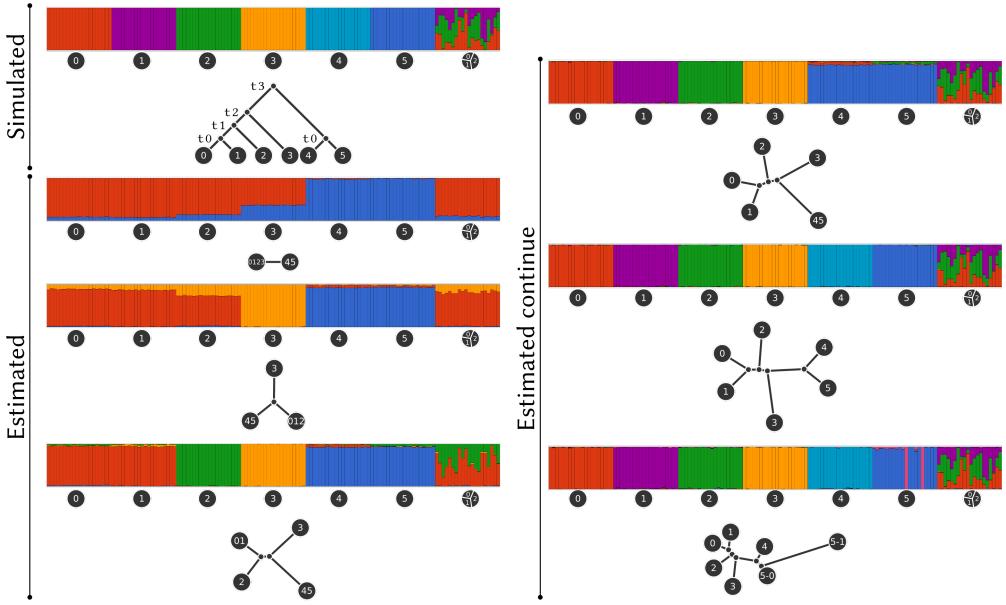
More examples: scaling factor applied to a portion of the covariance structure.



Example #1 Example #2

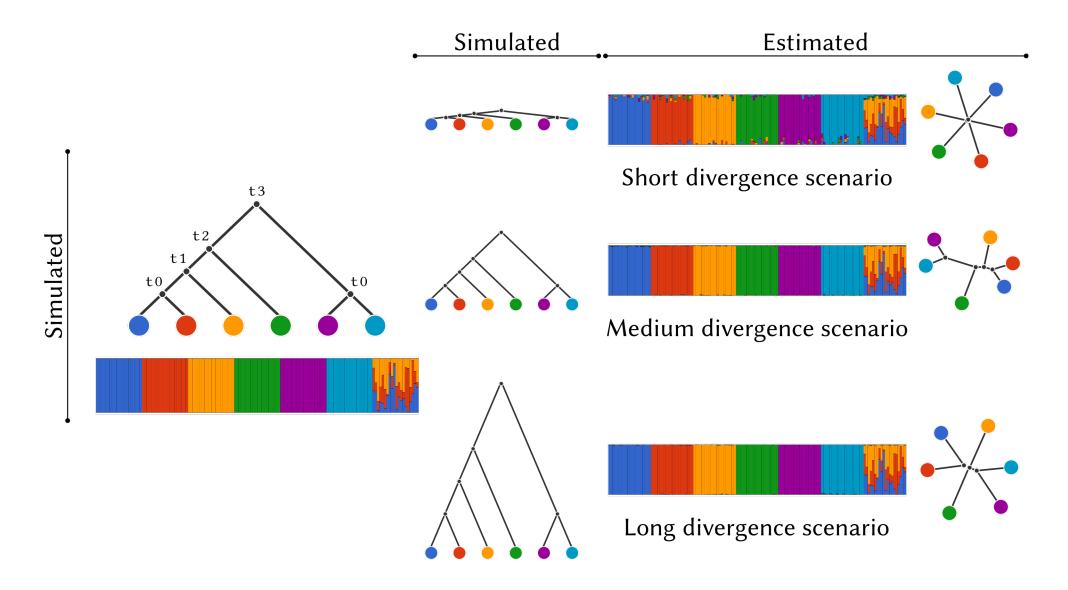


## Ohana-Simulation



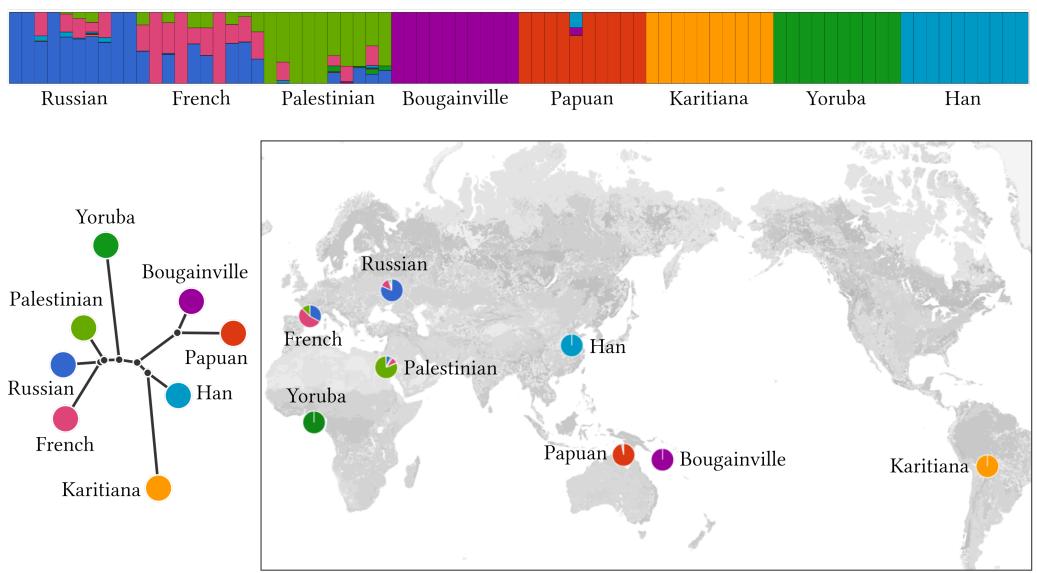


## **Ohana—Different divergences**





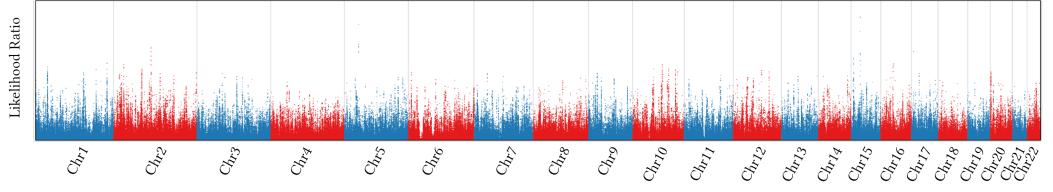
# Ohana—Biological data

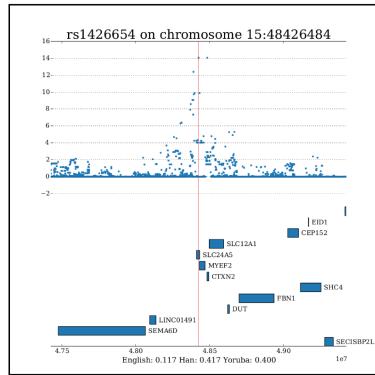


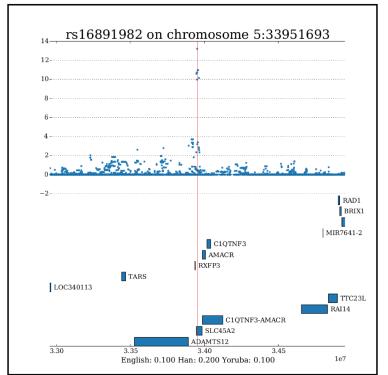


## Ohana—Selection from real data

## A selection scan for English, Han, and Yoruba



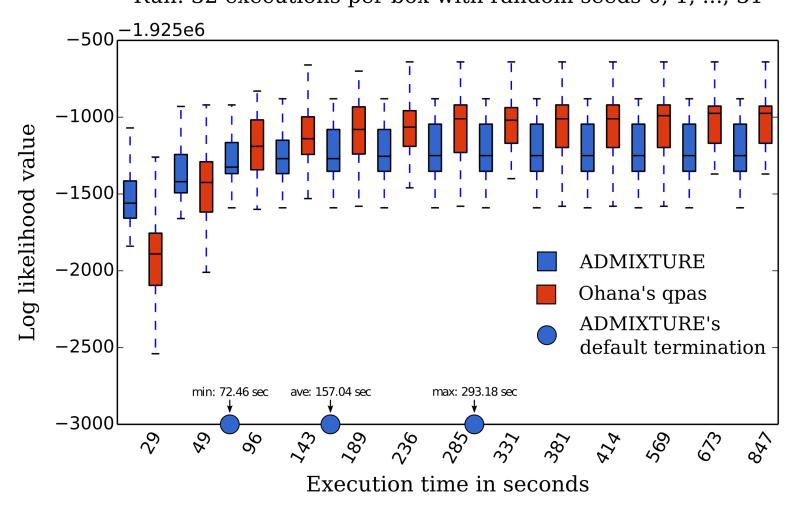






# Ohana—Performance comparison

ADMIXTURE vs. Ohana's qpas using genotype observations Data: 118 European samples, 17,507 markers Run: 32 executions per box with random seeds 0, 1, ..., 31





# Ohana—Performance comparison

Highest likelihood comparison

Each program each K, 100 executions using random seeds 0, 1, ..., 99

|    | Dataset #1 |           | Dataset #2 |          | Dataset #3 |      |          |           |      |
|----|------------|-----------|------------|----------|------------|------|----------|-----------|------|
| K  | Ohana      | ADMIXTURE | Diff       | Ohana    | ADMIXTURE  | Diff | Ohana    | ADMIXTURE | Diff |
| 2  | -1967733   | -1967733  | 0          | -3835358 | -3835365   | 7    | -1857263 | -1857263  | 0    |
| 3  | -1956785   | -1956799  | 14         | -3799873 | -3799887   | 14   | -1848450 | -1848451  | 1    |
| 4  | -1946218   | -1946244  | 26         | -3788598 | -3788607   | 10   | -1841198 | -1841199  | 1    |
| 5  | -1935775   | -1936025  | 250        | -3777351 | -3777361   | 11   | -1834377 | -1834378  | 1    |
| 6  | -1925636   | -1925877  | 241        | -3766558 | -3766540   | -18  | -1827829 | -1827830  | 2    |
| 7  | -1915552   | -1915743  | 191        | -3755851 | -3755860   | 9    | -1821445 | -1821458  | 13   |
| 8  | -1905430   | -1905638  | 209        | -3746227 | -3745412   | -815 | -1815214 | -1815214  | 0    |
| 9  | -1895372   | -1895879  | 507        | -3735240 | -3736079   | 839  | -1809084 | -1809101  | 18   |
| 10 | -1885306   | -1885466  | 160        | -3725558 | -3725624   | 66   | -1802911 | -1802906  | -5   |
| 11 | -1875503   | -1875853  | 350        | -3715543 | -3715157   | -385 | -1796763 | -1796847  | 84   |
| 12 | -1865492   | -1865965  | 474        | -3706069 | -3707715   | 1646 | -1790671 | -1790811  | 140  |
| 13 | -1855502   | -1856262  | 760        | -3697531 | -3698519   | 987  | -1784688 | -1784765  | 77   |
| 14 | -1845732   | -1846490  | 758        | -3688970 | -3689124   | 154  | -1778599 | -1778671  | 73   |
| 15 | -1836315   | -1836775  | 460        | -3681092 | -3680829   | -263 | -1772555 | -1772669  | 114  |



## **Summary**

I developed mathematical methods and software tools

Admixture CoalHMM: https://github.com/jade-cheng/Jocx

Ohana: https://github.com/jade-cheng/Ohana

http://jade-cheng.com/ohana

... to study admixture

Admixture CoalHMM: infers demographic parameters

Ohana: infers population structure

infers evolutionary tree

identifies selection signals

... from genomic data.

Admixture CoalHMM: use full genome

from a few individuals

Ohana: use site-independent polymorphic data

from many individuals



#### **Future Work**

#### CoalHMM:

Immediate: • Stand-alone software package

Longer term: • Automated model construction

Model comparison

#### Ohana:

Immediate: • Simulation validation for selection modules

• Joint modeling of ancient and modern data

Longer term: • Joint inference with penalty and other likelihood functions

Relax the tree-like assumption

Thank Clou!

i對 i對 大家



## **Ohana**—Joint inference

#### Idea:

infer with additional information using Structure modeling with or without additional parameters

#### Addition:

penalty, rewards, or additional likelihood functions, in general Requirements:

second-order differentiable; respect the block structure

## Approach:

incorporate new derivatives into SQP to solve Q and F solve additional parameters with simple NO like NM fixing each party while solving the other, switch, and iterate

#### Examples:

penalize admixing to prefer unadmixed estimates modeling of the F with multivariate or simple Gaussian



# Joint Modeling of Ancient and Modern Data

