Learning with Admixture: Modeling, Optimization, and Applications in Population Genetics

PhD Student: Jade Y. Cheng

Main supervisor: Dr. Thomas Mailund

Co-supervisor: Dr. Christian N. S. Pedersen

Main institution: Bioinformatics Research Centre,

Department of Computer Science,

Aarhus University, Denmark

Visiting supervisor: Dr. Rasmus Nielsen

Visiting institution: Center for Theoretical Evolutionary Genomics,

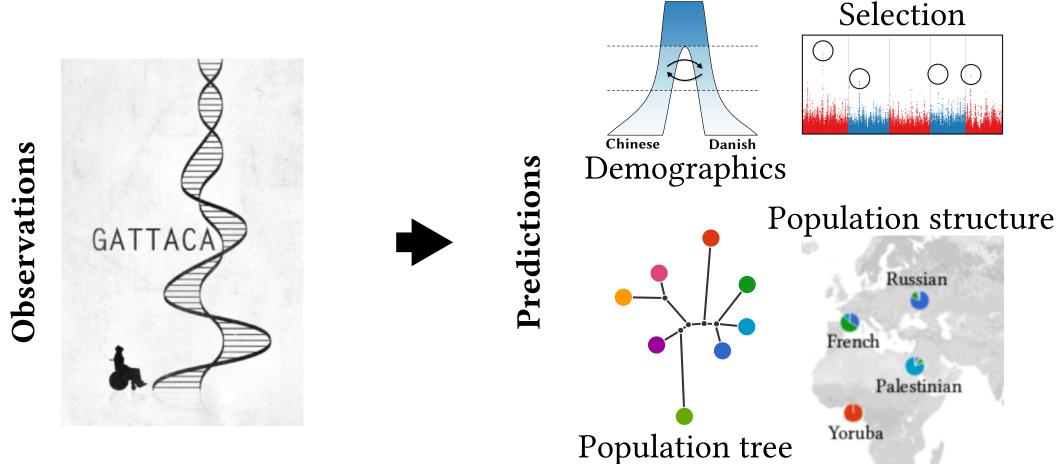
Genetics and Statistics,

University of California, Berkeley, USA

Population Genetics

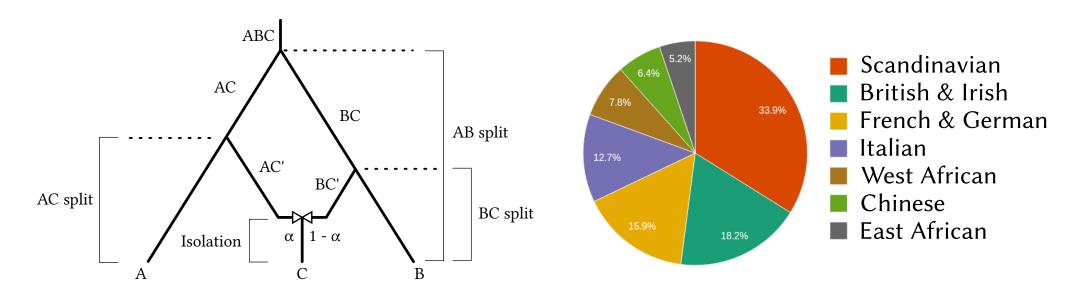
A branch of applied mathematics

A translation of scientific **observations** into mathematical models To produce quantitative **predictions** about evolution



Admixture

Admixture, gene flow, and hybridization Important forces in shaping evolutionary history

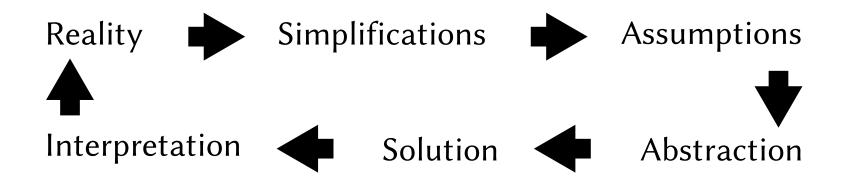


Admixture event

Admixture proportions

Modeling and Optimization

A mathematical model is an abstraction that describes portions of reality It is expressed in the language of mathematics



Numerical optimization finds values of variables that optimize an objective No universal algorithm, each is designed for a particular type of problem

	Emphasis of this dissertation
VS.	Continuous optimization
VS.	Deterministic optimization
VS.	Constraint optimization
	VS.

Project history and me

CoalHMM

The development of CoalHMM at BiRC dates back to 2007.

I joined Dr. Thomas Mailund's development team in early 2014.

I have mainly contributed in two directions:

- 1. Optimization through heuristic-based evolutionary algorithms
- 2. Modeling and inferring historical admixture events

Ohana

Ohana started at UC Berkeley with Dr. Rasmus Nielsen, early 2015.

I named the project Ohana, meaning "family" in Hawaiian.

I am the main contributor for all methods and software modules:

- 1. Admixture inference
- 2. Evolutionary tree estimation
- 3. Selection identification

Publications

CoalHMM

Jade Yu Cheng and Thomas Mailund. 2015 "Ancestral population genomics using coalescence hidden Markov models and heuristic optimisation algorithms" *Computational Biology and Chemistry*, 57, pp.80-92

Jade Yu Cheng and Thomas Mailund. 2016 "A coalescent hidden Markov model for inferring admixture relationships" in preparation

Tianying Lan, **Jade Yu Cheng**, Aakrosh Ratan, Webb Miller, Stephan C. Schuster, Karyn Rode, Todd Atwood, Sean Farley, Dick Richard T. Shideler, Sandra L. Talbot, Thomas Mailund, Charlotte Lindqvist. 2016 "Genome-wide evidence for a hybrid origin of modern polar bears" *bioRxiv*, *p.047498*

Ohana

Jade Yu Cheng, Thomas Mailund, and Rasmus Nielsen. 2016 "Ohana, a tool set for population genetic analyses of admixture components" *bioRxiv*, *p.071233*, *submitted to Bioinformatics*

Anna-Sapfo Malaspinas, Michael C Westaway, Craig Muller, Vitor C Sousa, Oscar Lao, Isabel Alves, Anders Bergström, Georgios Athanasiadis, **Jade Y Cheng**, ..., Eske Willerslev. 2016 "The genomic history of Australia" *Nature*, doi:10.1038/nature18299

Georgios Athanasiadis, **Jade Yu Cheng**, Bjarni J. Vilhjálmsson, Frank Grønlund Jørgensen, Thomas D. Als, Stephanie Le Hellard, Thomas Espeseth, Patrick F. Sullivan, Christina M. Hultman, Peter Kjærgaard, Mikkel Heide Schierup, Thomas Mailund. 2016 "Nationwide genomic study in Denmark reveals remarkable population homogeneity" *to appear in Genetics*

Admixture CoalHMM

Introduction to CoalHMM

Model: Hidden Markov model

Foundation: Coalescence theory

Key assumption: Local genealogy is Markovian along the alignment

Parametrized: All forms of gene flow

Population splits

Coalescent rate

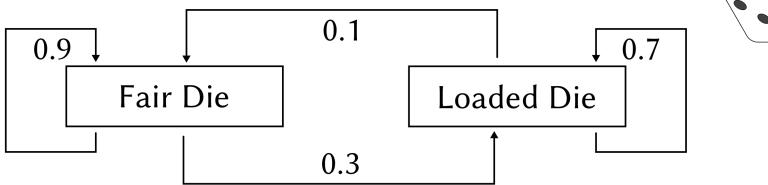
Recombination rate

Similar methods: PSMC leads the way in popularity

Complexity: Exponential as samples increase

HMM Example

The Occasionally Dishonest Casino:



Observations:

124552646214614613613666166466163661636615115146123562344

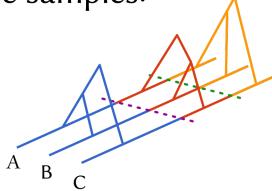
Questions:

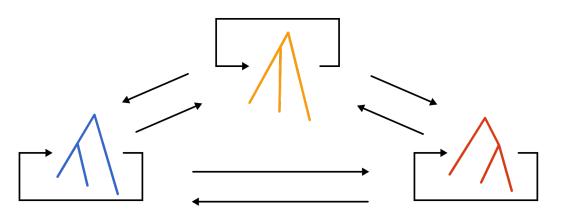
How likely is this sequence, given the model, i.e. how they cheat? How "loaded" is the loaded die? How often does the die change? What portion of the sequence was generated with each die?

Reference: Machine Learning 10-701/15-781, Computer Science, Carnegie Mellon University

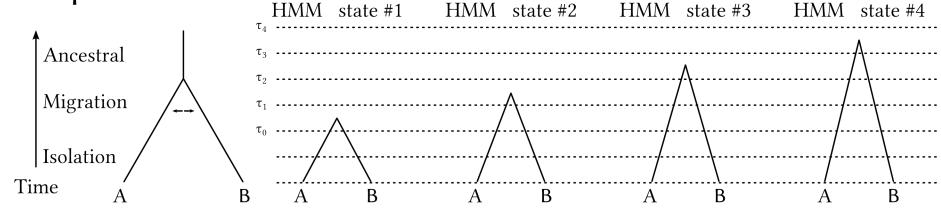
CoalHMM-HMM

Three samples:





Two samples:

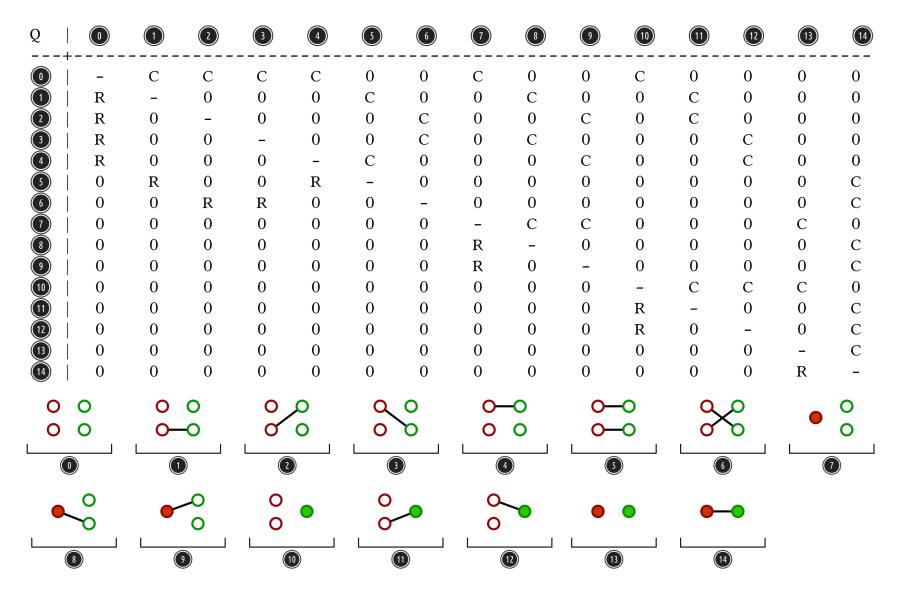


Observations: ACT-ACTGACTTGACTGACTTGACTGACTGACTGACG--CTGG... ACTGACTGACTTGACTG-CTTGTCTGACTAGACTGACGAGGAGG...

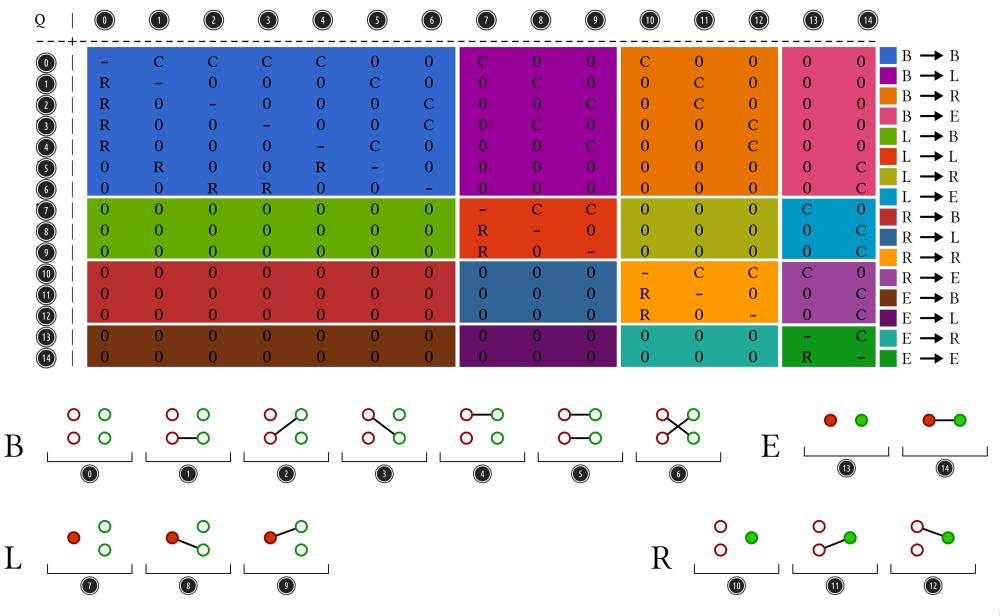
 \rightarrow 0002000000000000020000100100000000000221100...

CoalHMM—CTMC

Markovian along the alignment, so only consider two adjacent nucleotides



CoalHMM—Joint Probability

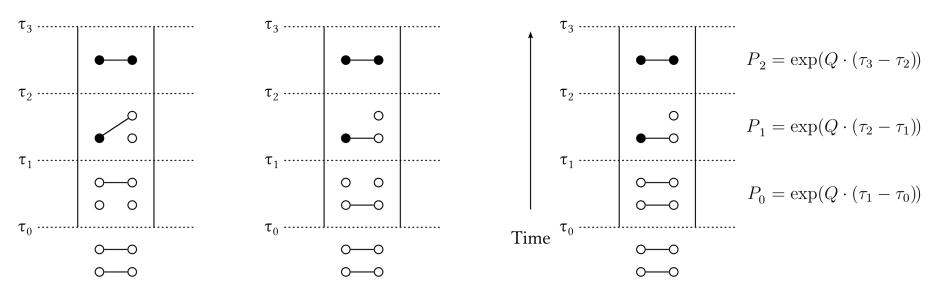


CoalHMM—Joint Probability

$$J_{ij} = \begin{cases} \sum_{\alpha} \sum_{\beta} M_{\alpha\beta} & \text{when } i \leq j \\ J_{ji} & \text{when } i > j \end{cases}$$

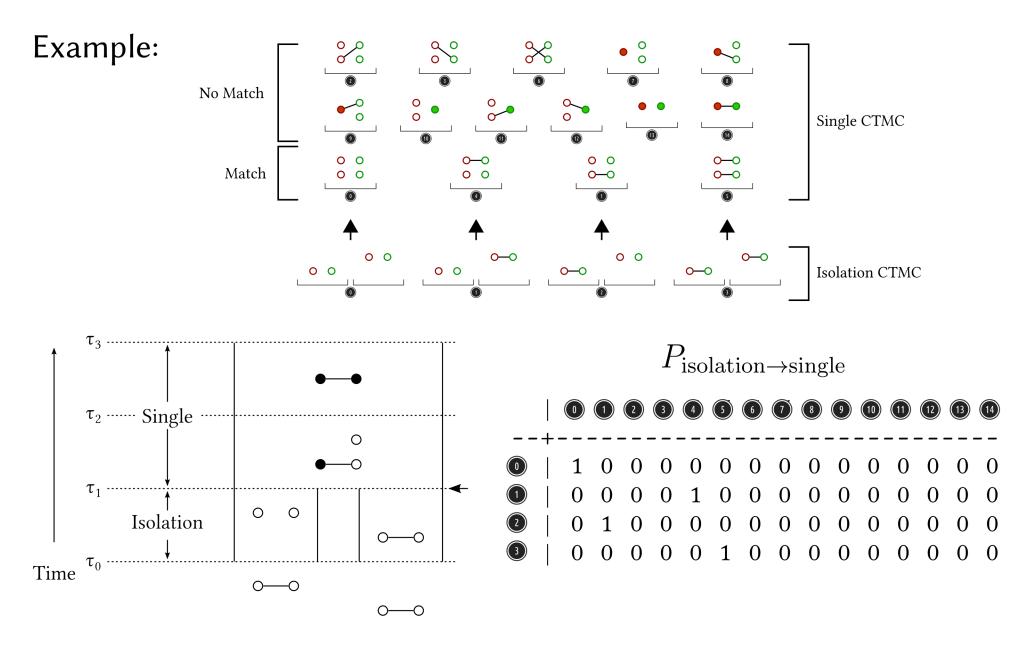
$$M_{ij} = \begin{cases} (P_0)_{0B} \times \dots \times (P_{i-1})_{BB} \times (P_i)_{BL} \times (P_{i+1})_{LL} \times \dots \times (P_{j-1})_{LL} \times (P_j)_{LE} & \text{when } i < j \\ (P_0)_{0B} \times (P_1)_{BB} \times \dots \times (P_{i-1})_{BB} \times (P_i)_{BE} & \text{when } i = j \end{cases}$$

Example:



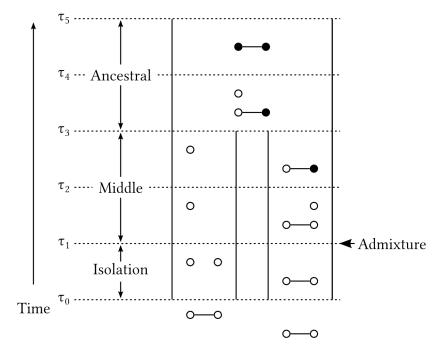
$$J_{23} = \sum_{\alpha} \sum_{\beta} ((P_0)_{0B} \times (P_1)_{BL} \times (P_2)_{LE})_{\alpha\beta}$$

CoalHMM—CTMC Projection



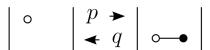
CoalHMM—Admixture

Example:



Source state:

a.
$$\{1, (\{1\}, \{\})\}\ \{2, (\{2\}, \{1, 2\})\}\$$



Destination states:

a.
$$\{1, (\{1\}, \{\})\}\ \{2, (\{2\}, \{1, 2\})\}\$$

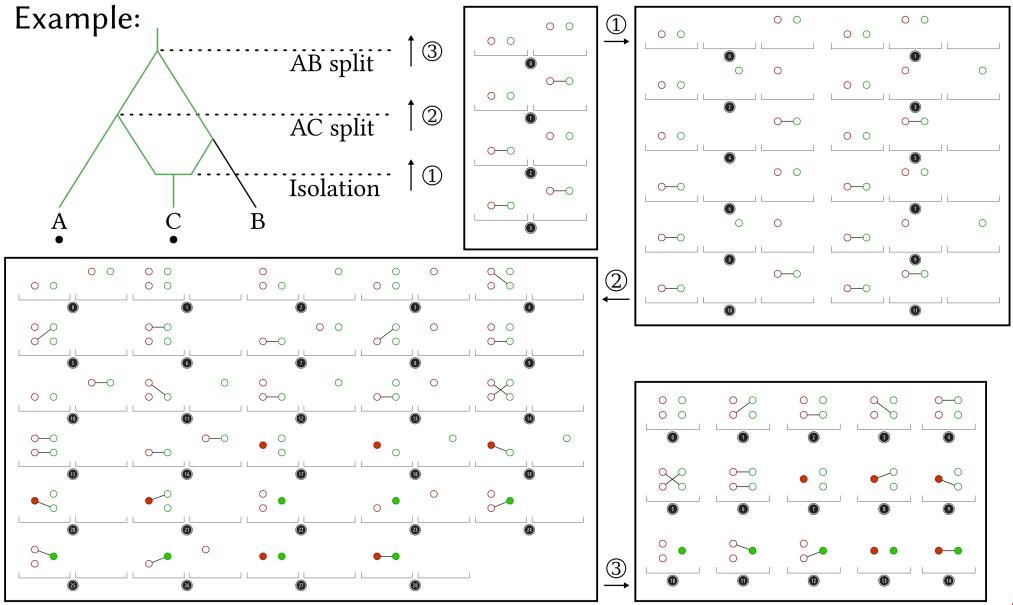
b.
$$\{1, (\{1\}, \{\})\}\ \{1, (\{2\}, \{1, 2\})\}$$

d.
$$\{2, (\{1\}, \{\})\}\ \{1, (\{2\}, \{1, 2\})\}\$$

	0
○	

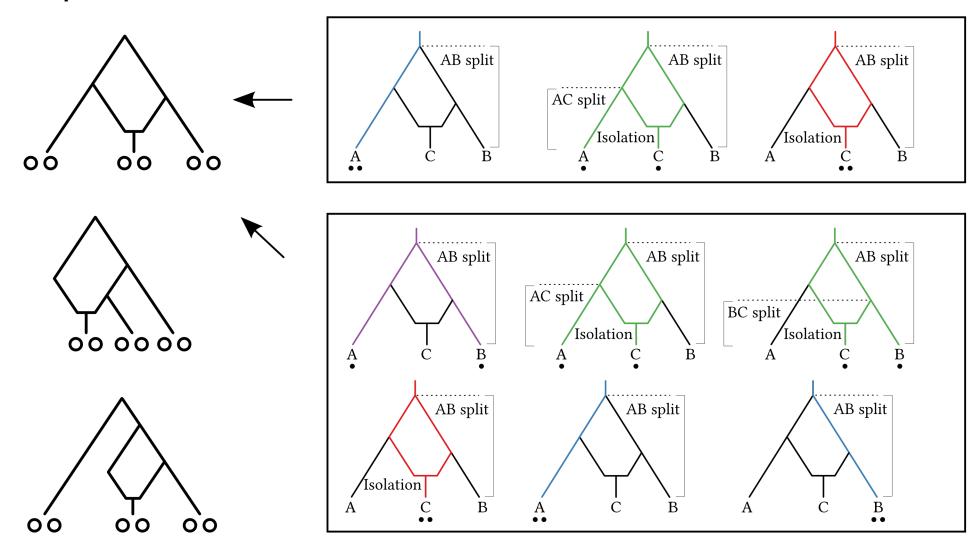
binary index	pieces	destination	probability
00	nobody moves	a	$(1-p)\cdot (1-q)$
01	left piece stays; right piece moves	b	$(1-p)\cdot q$
10	left piece moves; right piece stays	C	$p \cdot (1-q)$
11	both pieces move	d	$p \cdot q$

CoalHMM—HMM



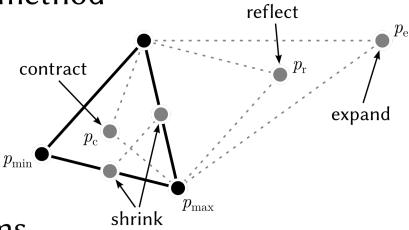
CoalHMM—Composite Likelihood

Example:



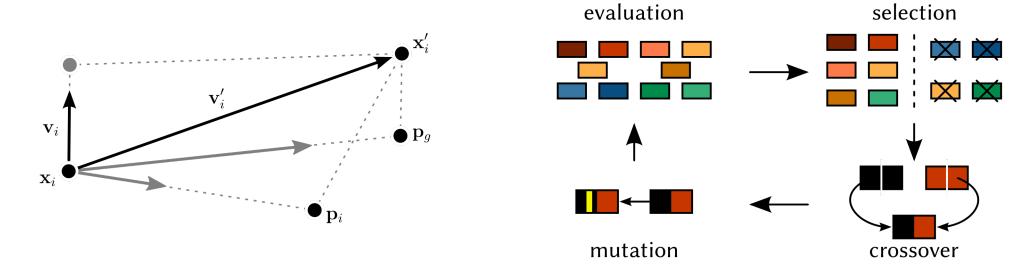
CoalHMM—Optimization

Nelder-Mead simplex method

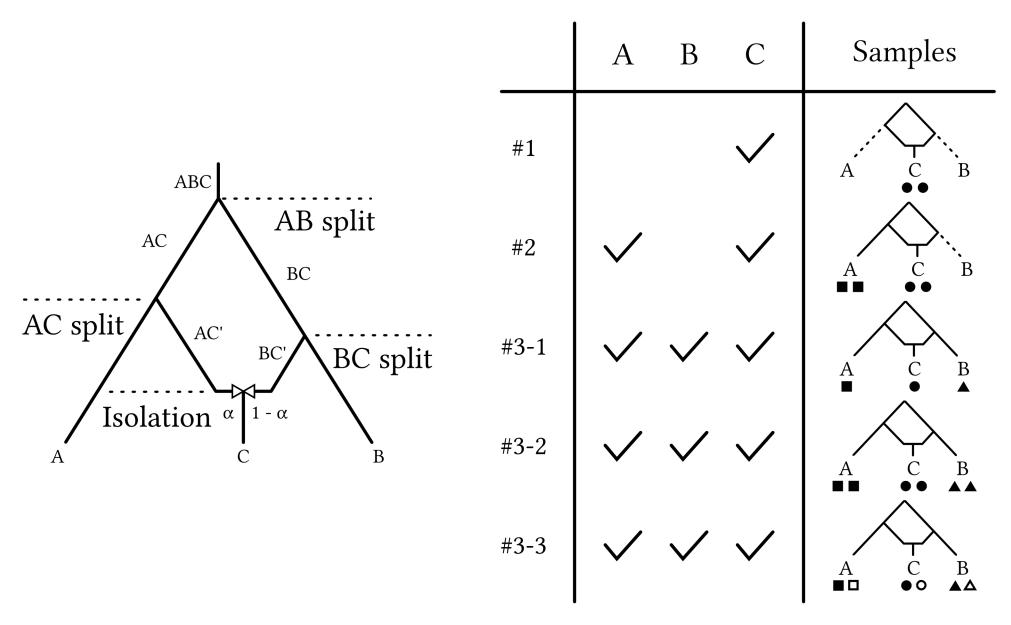


Evolutionary algorithms

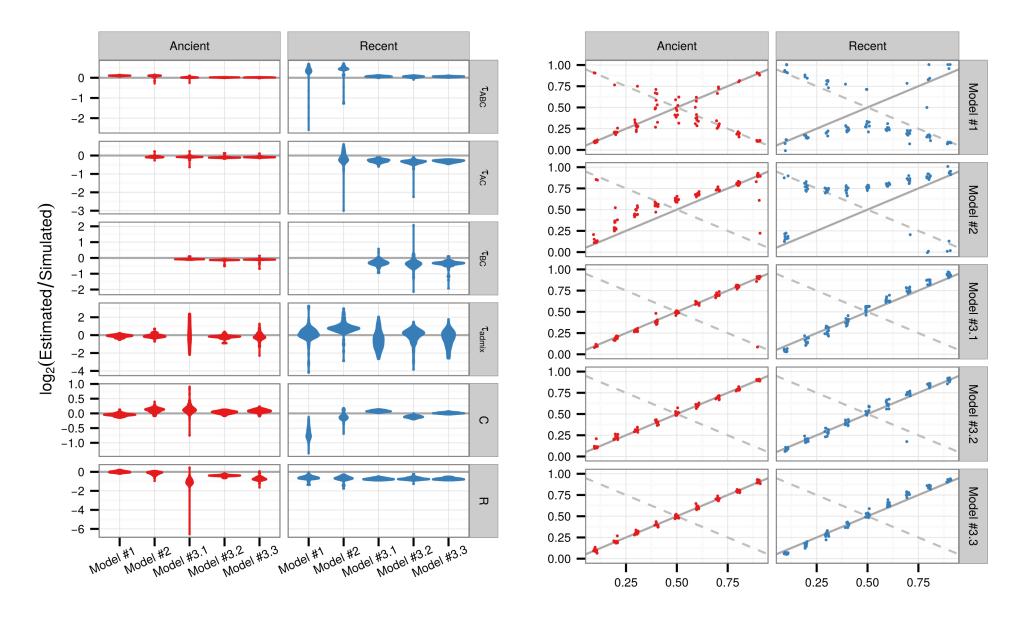
Particle swarm optimization (left) and Genetic algorithm (right)



CoalHMM—Simulation



CoalHMM—Simulation



Ohana

Introduction to Ohana

Admixture module:

Model: Classical Structure model, Unsupervised learning

Optimization: Sequential quadratic programming

Active Set algorithm

Complementarity Pivoting algorithm

Evolutionary tree module:

Model: Gaussian approximation

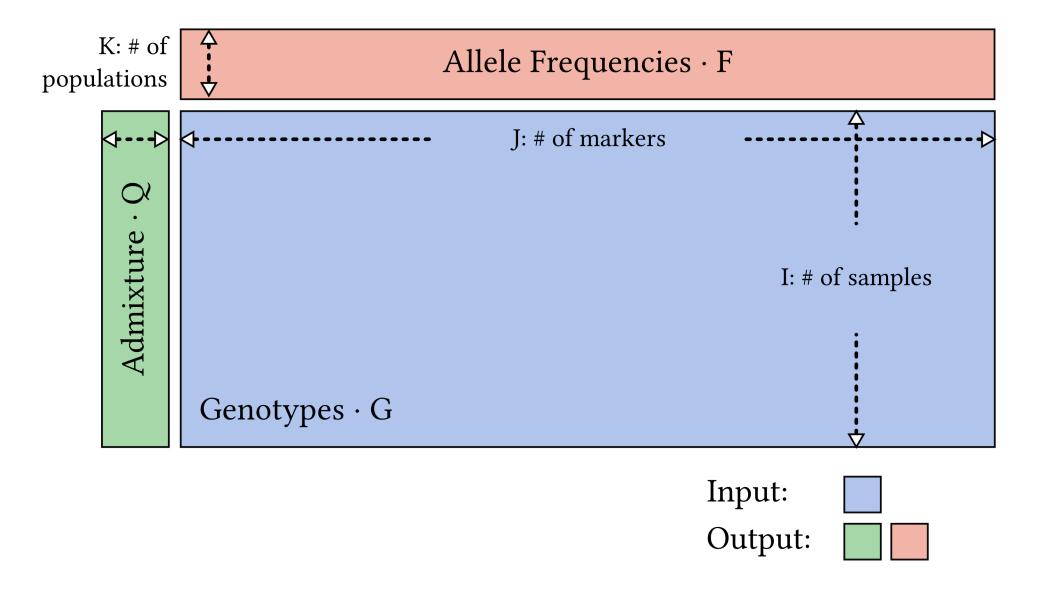
Optimization: Nelder-Mead simplex optimization

Selection module:

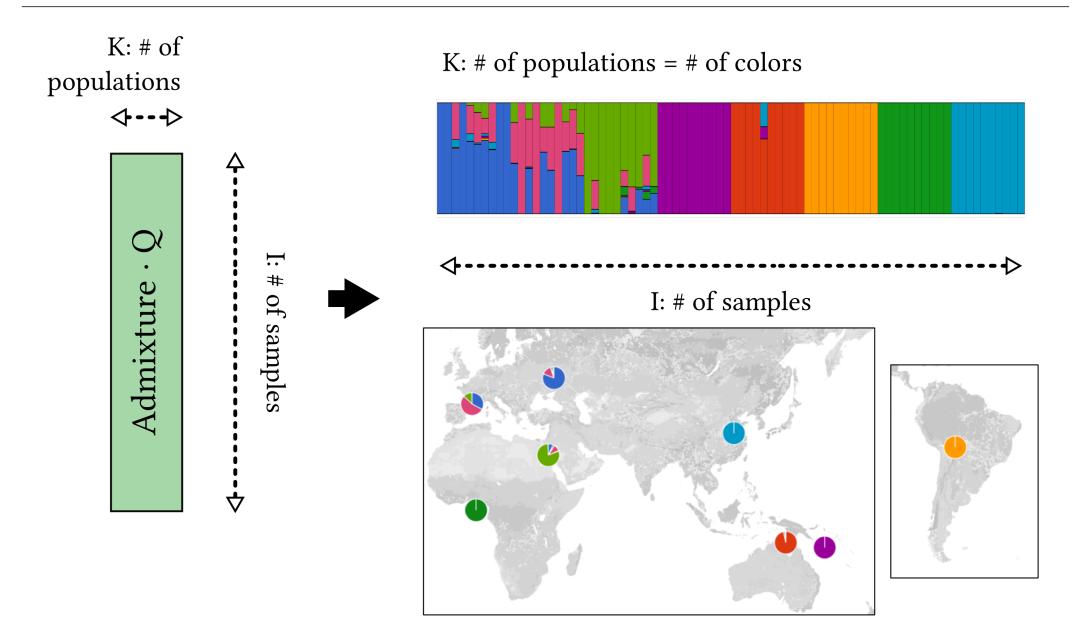
Model: Nested likelihood models

Optimization: Nelder-Mead simplex optimization

Introduction to Ohana—Data



Introduction to Ohana—Admixture



Ohana-Structure Model

Genotype observations

$$\ln [P_1^O(Q, F)] = \sum_{i=1}^{I} \sum_{j=1}^{J} [g_{ij} \cdot \ln (A_{ij}) + (2 - g_{ij}) \cdot \ln (B_{ij})]$$

Genotype likelihoods

$$P_{1}^{L}(Q, F) = \sum_{g} \left[Pr(X \mid g) \cdot Pr(g \mid Q, F) \right]$$

$$A_{ij} = \sum_{k}^{K} q_{ik} \cdot f_{kj}$$

$$Pr(X_{ij} \mid g_{ij}) = \begin{cases} g_{ij}^{AA} & \text{for } AA \\ g_{ij}^{Aa} & \text{for } Aa \text{ or } aA \\ g_{ij}^{aa} & \text{for } aa \end{cases}$$

$$B_{ij} = \sum_{k}^{K} q_{ik} \cdot (1 - f_{kj})$$

$$\ln \left[P_1^L (Q, F) \right] = \sum_{i=1}^{I} \sum_{j=1}^{J} \ln \left(g_{ij}^{AA} \cdot A_{ij}^2 + g_{ij}^{aa} B_{ij}^2 + g_{ij}^{Aa} \cdot 2A_{ij} B_{ij} \right)$$

Ohana—Optimization

Quadratic Programming and Newton's update

$$\frac{1}{2}\bar{x}^{T}Q\bar{x} + c^{T}\bar{x}$$

$$F_{T}(x_{n} + \Delta x) = F(x_{n}) + F'(x_{n})\Delta x + \frac{1}{2}F''(x_{n})\Delta x^{2}$$

Sequential Quadratic Programming

$$\ln \left[P_1^O(Q, F) \right] = \sum_{i}^{I} \sum_{j}^{J} \left[g_{ij} \cdot \ln \left(A_{ij} \right) + (2 - g_{ij}) \cdot \ln \left(B_{ij} \right) \right]$$

$$\ln \left[P_1^L(Q, F) \right] = \sum_{i}^{I} \sum_{j}^{J} \ln \left(g_{ij}^{AA} \cdot A_{ij}^2 + g_{ij}^{aa} B_{ij}^2 + g_{ij}^{Aa} \cdot 2A_{ij} B_{ij} \right)$$

Equality and inequality constraints

$$F \rightarrow \forall \Delta f_{kj}, \ f_{kj} + \Delta f_{kj} \in [0, \ 1]$$

$$Q \rightarrow \begin{matrix} \forall \Delta q_{ik}, \ q_{ik} + \Delta q_{ik} \in [0, \ 1] \\ \forall \Delta q_{ik}, \ \sum_{k}^{K} \Delta q_{ik} = 0 \end{matrix} \quad \therefore \sum_{k}^{K} q_{ik} = 1$$

Ohana—Optimization

Derivatives of the objective P_1^O with respect to admixture proportions

$$\frac{\partial \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial q_{ik}} = \sum_{j}^{J} \left[\frac{g_{ij} \cdot f_{kj}}{\sum_{m}^{K} q_{im} \cdot f_{mj}} + \frac{(2 - g_{ij}) \cdot (1 - f_{kj})}{\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})} \right] \\
\frac{\partial^{2} \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial q_{ik} \partial q_{i'k'}} = \begin{cases}
\sum_{j}^{J} \left\{ \frac{g_{ij} \cdot f_{kj} \cdot f_{k'j}}{\left(\sum_{m}^{K} q_{im} \cdot f_{mj}\right)^{2}} + \frac{(2 - g_{ij}) \cdot (1 - f_{kj}) \cdot (1 - f_{k'j})}{\left[\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})\right]^{2}} \right\} & \text{if } i = i' \\
0 & \text{if } i = i'
\end{cases}$$

Derivatives of the objective P_1^O with respect to allele frequencies

$$\frac{\partial \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial f_{kj}} = \sum_{i}^{I} \left[\frac{g_{ij} \cdot q_{ik}}{\sum_{m}^{K} q_{im} \cdot f_{mj}} - \frac{(2 - g_{ij}) \cdot q_{ik}}{\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})}\right]$$

$$\frac{\partial^{2} \left(\ln\left[P_{1}^{O}\left(Q, F\right)\right]\right)}{\partial f_{kj} \partial f_{k'j'}} = \begin{cases}
\sum_{j}^{J} \left\{\frac{g_{ij} \cdot q_{ik} \cdot q_{ik'}}{\left(\sum_{m}^{K} q_{im} \cdot f_{mj}\right)^{2}} + \frac{(2 - g_{ij}) \cdot q_{ik} \cdot q_{ik'}}{\left[\sum_{m}^{K} q_{im} \cdot (1 - f_{mj})\right]^{2}}\right\} & \text{if } j = j' \\
0 & \text{if } j \neq j'
\end{cases}$$

Ohana—Optimization

Derivatives of the objective P_1^L with respect to admixture proportions

$$\frac{\partial \left(\ln \left[P_1^L\left(Q, F\right)\right]\right)}{\partial q_{ik}} = \sum_{j}^{J} \left[\frac{G_Q\left(i, j, k\right)}{F\left(i, j\right)}\right]$$

$$\frac{\partial^2 \left(\ln \left[P_1^L \left(Q, F \right) \right] \right)}{\partial q_{ik} \partial q_{i'k'}} = \begin{cases} \sum_j^J \left[\frac{F(i,j) \cdot H_Q(i,j,k,k') - G_Q(i,j,k) \cdot G_Q(i,j,k')}{F^2(i,j)} \right] & \text{if } i = i' \\ 0 & \text{if } i \neq i' \end{cases}$$

Derivatives of the objective P_1^L with respect to allele frequencies

$$\frac{\partial \left(\ln \left[P_1^L\left(Q, F\right)\right]\right)}{\partial f_{kj}} = \sum_{i}^{I} \left[\frac{G_F\left(i, j, k\right)}{F\left(i, j\right)}\right]$$

$$\frac{\partial^2 \left(\ln \left[P_1^L \left(Q, F \right) \right] \right)}{df_{kj} df_{k'j'}} = \begin{cases} \sum_{i}^{I} \left[\frac{F(i,j) \cdot H_F(i,j,k,k') - G_F(i,j,k) \cdot G_F(i,j,k')}{F^2(i,j)} \right] & \text{if } j = j' \\ 0 & \text{if } j \neq j' \end{cases}$$

Ohana—Optimization with Block Structure

Rather than solving the full system $\Theta(I^2K^2 \cdot (I + 2IK) + J^2K^2 \cdot 2JK) = \Theta(J^3K^3)$

Example:

$$H_Q = \begin{bmatrix} * & * & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 & 0 \\ 0 & 0 & * & * & 0 & 0 \\ 0 & 0 & * & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \end{bmatrix}$$

$$D_Q = [* * * * * * *]$$

$$D_Q = [* * * * * * *]$$
 $D_F = [* * * * * * * *]$

... we handle a collection of small operations $\Theta(IK^2 \cdot (I+2K) + JK^2 \cdot 2K) = \Theta(JK^3)$

$$H_{Q_i} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$$
 $H_{F_j} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}$ $D_{Q_i} = \begin{bmatrix} * & * \end{bmatrix}$ $D_{F_j} = \begin{bmatrix} * & * \end{bmatrix}$

Ohana—QP Active Set Algorithm

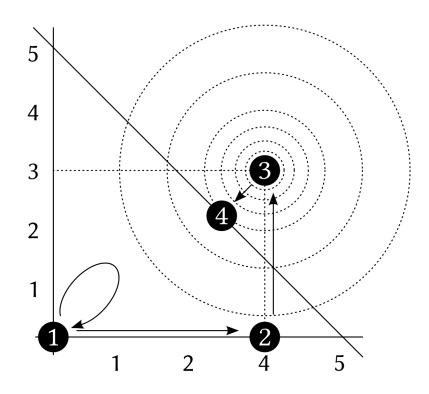
Concreate example:

$$\min_{x} \left\{ x^2 + y^2 - 8x - 6y \right\}$$
s.t. $-x \le 0$
 $-y \le 0$
 $x + y \le 5$

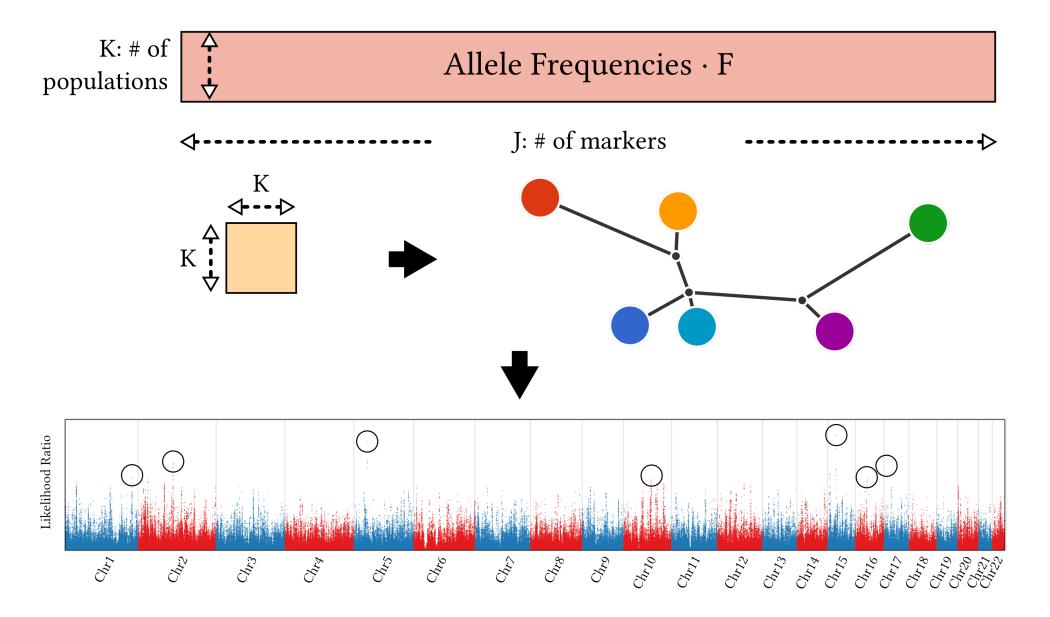
$$H = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$D = \begin{bmatrix} -8 \\ -6 \end{bmatrix}$$

$$\min_{x} \left\{ \frac{1}{2} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -8 \\ -6 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \right\}$$



Introduction to Ohana—Tree and Selection



Ohana—Gaussian approximation

Joint distribution of allele frequencies as a multivariate Gaussian

$$P(f_j \mid \Omega, \mu_j) \sim \mathcal{N}(\mu_j, \mu_j (1 - \mu_j) \Omega)$$

$$\ln [P_2(F)] = -\frac{1}{2} \cdot \sum_{j=1}^{J} \left\{ K \cdot \ln (2\pi c_j) + \ln [\det (\Omega)] + \frac{1}{c_j} \cdot (f_j - \mu_j)^T \Omega^{-1} (f_j - \mu_j) \right\}$$

Root all populations at an arbitrarily chosen population

$$\ln [P_2(F)] = -\frac{1}{2} \cdot \sum_{j=1}^{J} \left\{ (K-1) \cdot \ln (2\pi c_j) + \ln [\det (\Omega')] + \frac{1}{c_j} \cdot f_j'^T \cdot \Omega'^{-1} \cdot f_j' \right\}$$

where
$$c_j = \mu_j (1 - \mu_j)$$

$$f_j' = f_j - f_{j_0}$$

Ohana—Phylogenetic Tree Estimation

3 3 0.33 0.22 0.16 0.22 0.56 0.15 0.16 0.15 0.24

Step #1: the rooted covariance matrix estimated for 4 populations

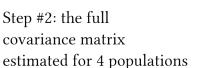
 4 4

 0.00 0.00 0.00 0.00

 0.00 0.33 0.22 0.16

 0.00 0.22 0.56 0.15

 0.00 0.16 0.15 0.24



A 0.00 0.33 0.56 0.24 B 0.33 0.00 0.45 0.25 C 0.56 0.45 0.00 0.50 D 0.24 0.25 0.50 0.00

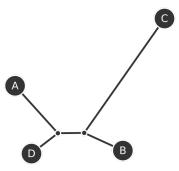
Step #3 the distance matrix in PHYLIP format, calculated from the full covariance matrix

convert cov2nwk

(A:0.157667, (C:0.345000, B:0.105000):0.065000, D:0.082333);

Step #4: the phylogenetic tree constructed from the distance matrix

convert nwk2svg
or the following service for even better quality graphics
http://www.jade-cheng.com/graphs/



Step #5: visualization of the phylogenetic tree

Ohana-Selection

Selection increases the variance among populations.

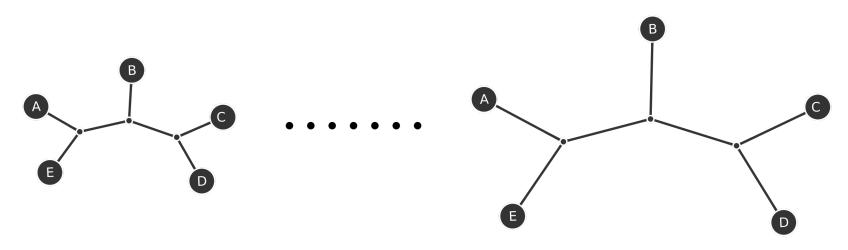
Test each marker if it favors a larger variance.

Similar information as FST-based selection methods, but unsupervised.

$$P(f_{j} \mid \Omega, \ \mu_{j}) \sim \mathcal{N}(\mu_{j}, \ \mu_{j} (1 - \mu_{j}) \Omega)$$

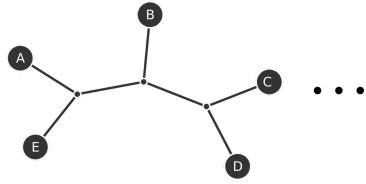
$$\ln [P_{2}(F)] = -\frac{1}{2} \cdot \sum_{j}^{J} \left\{ K \cdot \ln (2\pi c_{j}) + \ln \left[\det (\Omega)\right] + \frac{1}{c_{j}} \cdot (f_{j} - \mu_{j})^{T} \Omega^{-1} (f_{j} - \mu_{j}) \right\}$$

Example: scaling factor applied to the entire covariance structure.



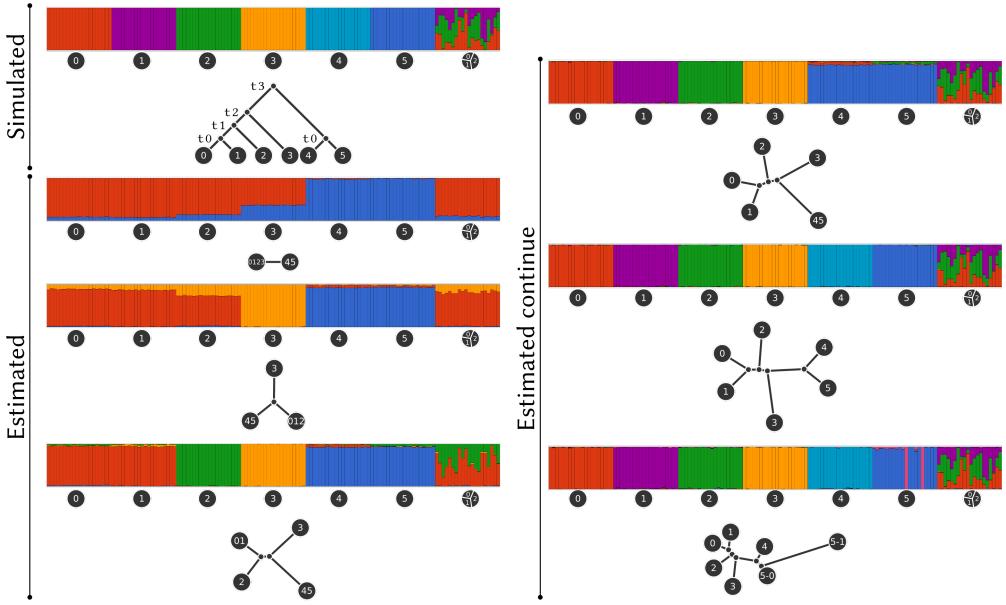
Ohana-Selection

More examples: scaling factor applied to a portion of the covariance structure.

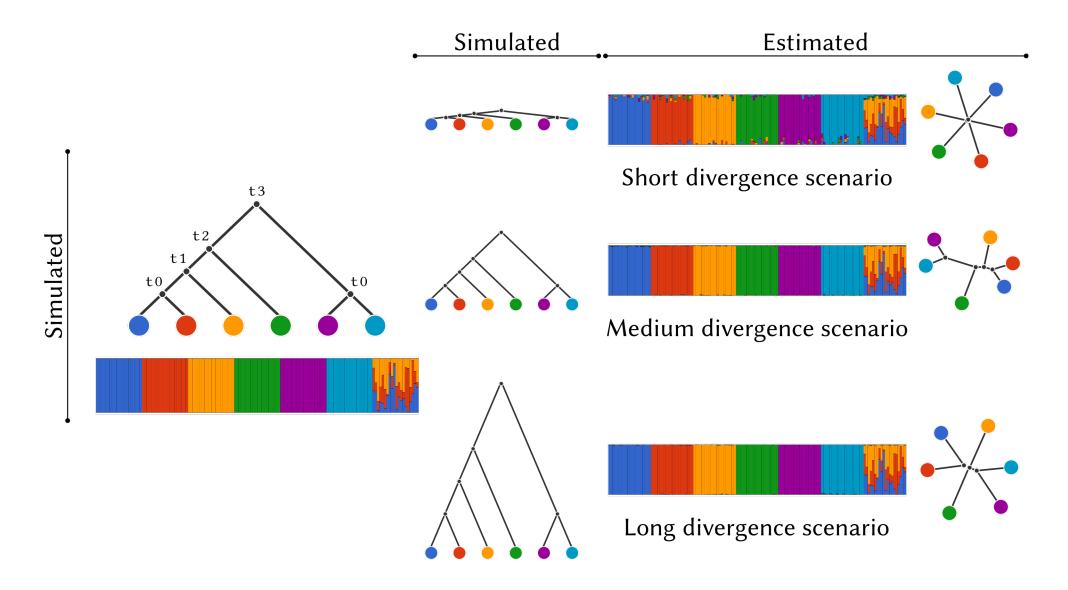


Example #1 Example #2

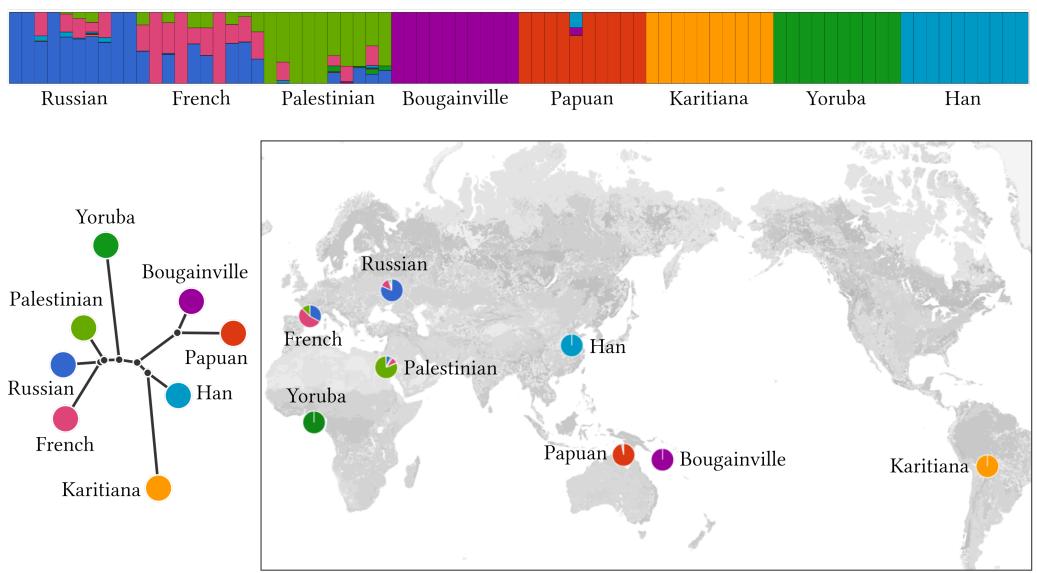
Ohana-Simulation



Ohana—Different divergences

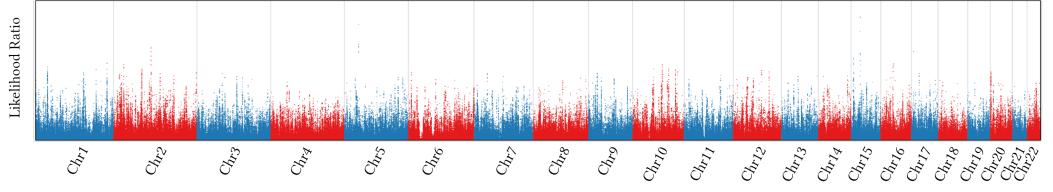


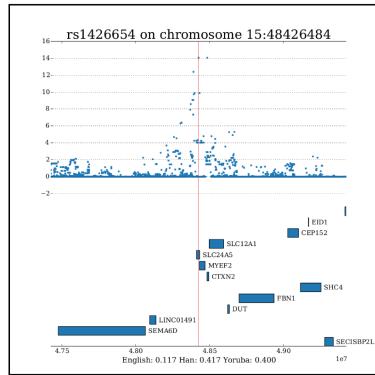
Ohana—Biological data

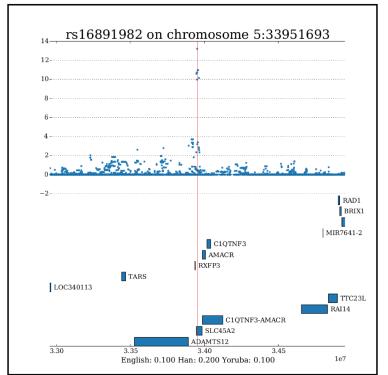


Ohana—Selection from real data

A selection scan for English, Han, and Yoruba

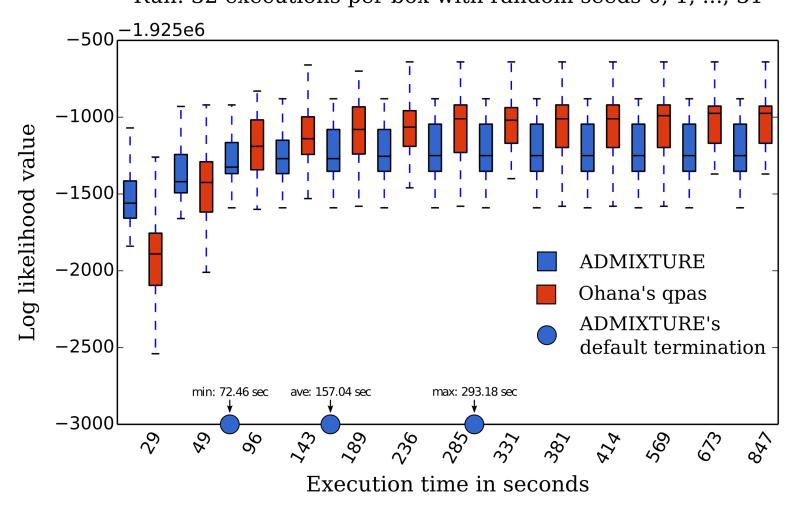






Ohana—Performance comparison

ADMIXTURE vs. Ohana's qpas using genotype observations Data: 118 European samples, 17,507 markers Run: 32 executions per box with random seeds 0, 1, ..., 31



Ohana—Performance comparison

Highest likelihood comparison

Each program each K, 100 executions using random seeds 0, 1, ..., 99

	Dataset #1		Dataset #2		Dataset #3				
K	Ohana	ADMIXTURE	Diff	Ohana	ADMIXTURE	Diff	Ohana	ADMIXTURE	Diff
2	-1967733	-1967733	0	-3835358	-3835365	7	-1857263	-1857263	0
3	-1956785	-1956799	14	-3799873	-3799887	14	-1848450	-1848451	1
4	-1946218	-1946244	26	-3788598	-3788607	10	-1841198	-1841199	1
5	-1935775	-1936025	250	-3777351	-3777361	11	-1834377	-1834378	1
6	-1925636	-1925877	241	-3766558	-3766540	-18	-1827829	-1827830	2
7	-1915552	-1915743	191	-3755851	-3755860	9	-1821445	-1821458	13
8	-1905430	-1905638	209	-3746227	-3745412	-815	-1815214	-1815214	0
9	-1895372	-1895879	507	-3735240	-3736079	839	-1809084	-1809101	18
10	-1885306	-1885466	160	-3725558	-3725624	66	-1802911	-1802906	-5
11	-1875503	-1875853	350	-3715543	-3715157	-385	-1796763	-1796847	84
12	-1865492	-1865965	474	-3706069	-3707715	1646	-1790671	-1790811	140
13	-1855502	-1856262	760	-3697531	-3698519	987	-1784688	-1784765	77
14	-1845732	-1846490	758	-3688970	-3689124	154	-1778599	-1778671	73
15	-1836315	-1836775	460	-3681092	-3680829	-263	-1772555	-1772669	114

Summary

I developed mathematical methods and software tools

Admixture CoalHMM: https://github.com/jade-cheng/Jocx

Ohana: https://github.com/jade-cheng/Ohana

http://jade-cheng.com/ohana

... to study admixture

Admixture CoalHMM: infers demographic parameters

Ohana: infers population structure

infers evolutionary tree

identifies selection signals

... from genomic data.

Admixture CoalHMM: use full genome

from a few individuals

Ohana: use site-independent polymorphic data

from many individuals

Future Work

CoalHMM:

Immediate: • Stand-alone software package

Longer term: • Automated model construction

Model comparison

Ohana:

Immediate: • Simulation validation for selection modules

• Joint modeling of ancient and modern data

Longer term: • Joint inference with penalty and other likelihood functions

Relax the tree-like assumption

Thank Clou!

i對 i對 大家

Ohana—Joint inference

Idea:

infer with additional information using Structure modeling with or without additional parameters

Addition:

penalty, rewards, or additional likelihood functions, in general Requirements:

second-order differentiable; respect the block structure

Approach:

incorporate new derivatives into SQP to solve Q and F solve additional parameters with simple NO like NM fixing each party while solving the other, switch, and iterate

Examples:

penalize admixing to prefer unadmixed estimates modeling of the F with multivariate or simple Gaussian

Joint Modeling of Ancient and Modern Data

