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Abstract

Population genetics is a branch of applied mathematics. It is a translation of
scientific observations into mathematical models and their manipulations in
order to produce quantitative predictions about evolution. Combining knowl-
edge from genetics, statistics, and computer science, population geneticists
strive to establish working solutions to extract information from massive vol-
umes of biological data. The steep increase in the quantity and quality of
genomic data during the past decades provides a unique opportunity but also
calls for new and improved algorithms and software to cope with the big data
era.

In this PhD dissertation, I present my work on methods and tools devel-
oped for two projects, Admixture CoalHMM and Ohana, both of which have
been designed to study historical admixture and its influence on population
evolution. In Admixture CoalHMM, I make use of full genomic sequences
from a few individuals to perform demographic inference. In Ohana, I use
site-independent genomic data from many individuals to analyze individual
admixture, to infer population trees, and to identify selection signals.

The development of CoalHMM at the Bioinformatics Research Centre at
Aarhus University dates back to 2007 [11]. CoalHMM is a hidden Markov
model constructed on the foundation of coalescence theory with the key ap-
proximation that the distribution of local genealogies is Markovian along the
sequence alignment. Through parametrized modeling, CoalHMM attempts
to recover a full demography including population splits, effective popula-
tion sizes, gene flow, etc. Since joining the CoalHMM development team in
2014, I have mainly contributed in two directions: 1) improving optimizations
through heuristic-based evolutionary algorithms and 2) modeling of historical
admixture events.

Ohana, meaning “family” in Hawaiian, is a novel project I started at the
Center for Theoretical Evolutionary Genetics at the University of California
Berkeley. Ohana provides a set of methods and tools for structure analy-
sis, population tree inference, and selection study that fully takes advantage
of structured genomic data. Ohana’s admixture module is based on classi-
cal structure modeling [29] but uses new optimization subroutines through
quadratic programming, which outperform the current state-of-the-art soft-
ware in both speed and accuracy. Ohana presents a new method for phyloge-
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netic tree inference using Gaussian approximation. With the estimated global
ancestry and population relationships, Ohana provides a flexible selection sig-
nal detection process that considers any prior knowledge on the covariance
structure, e.g population bottleneck or local adaptation.

Statistical modeling and numerical optimization form the foundation for
both CoalHMM and Ohana. Optimization modeling has been the main theme
throughout my PhD, and it will continue to shape my work for the years to
come. The algorithms and software I developed to study historical admixture
and population evolution fall into a larger family of machine learning, and
their underlying techniques have a wide range of applications that go beyond
just bioinformatics and population genetics.



Resumé

Populationsgenetik er en gren af anvendt matematik. Målet er at oversæt-
telse videnskabelige observationer til matematiske modeller for at producere
kvantitative forudsigelser om evolution. Ved at kombinere viden fra genetik,
statistik og datalogi, forsøger genetikere at konstruere arbejdsmodeller der kan
trække viden ud af massive mængder af biologiske data. Den kraftige stign-
ing i mængden og kvaliteten af genomiske data i løbet af de seneste årtier
er en enestående mulighed, men kræver også nye og forbedrede algoritmer og
software til at håndtere denne æra af store datamænder.

I denne ph.d.-afhandling præsenterer jeg metoder og værktøjer udviklet i
to projekter, Admixture CoalHMM og Ohana, som begge er designet til at
studere historiske blanding af befolkninger og deres indflydelse på befolknin-
gens evolution. I Admixture CoalHMM udnytter jeg komplette genomiske
sekvenser fra et par af individer til at inferere demografiske parametre. I
Ohana udnytter jeg uafhængig genomiske varianter fra mange individer til at
analysere hvilken blanding af urbefolkninger hvert individ er fra, til at udlede
urbefolkningernes historie, og til at finde signaler for selektion.

Udviklingen af CoalHMM på Center for Bioinformatik ved Aarhus Uni-
versitet begyndte i 2007. CoalHMM er en skjult Markov model baseret på
coalescent teori, forsimplet ved at antage at tiden til coalescent langs et
genom er Markov. Gennem parametriserede modeller bruges CoalHMMer til
at forstå demografiske hændelser så som befolkningsopsplitning, effektiv be-
folkningstørelse, gen-udveksling, osv. Siden jeg startede i CoalHMM gruppen
in 2014 har jeg bidraget i to retninger: 1) forbedring af parameter-optimeringer
gennem heuristisk-baserede evolutionær algoritmer og 2) modellering af his-
toriske genudvekslinger.

Ohana, som betyder “familie” på hawaiiansk, er et nyt projekt jeg start-
ede på Center for Teoretisk Evolutionary Genetik ved University of California
Berkeley. Ohana indeholder en række metoder og værktøjer til strukturanal-
yse, inferens af befolkningstræer, og identifikation af selektion, der fuldt ud
udnytter strukturerede genomiske data. Ohanas admixturmodel er baseret på
den klassiske struktur modellering men bruger nye optimering subrutiner gen-
nem kvadratisk programmering, der udkonkurrerer state-of-the-art software
i både hastighed og nøjagtighed. Ohana præsenterer en ny metode til fylo-
genetisk træ inferens ved hjælp Gaussisk approksimation. Med de estimerede
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globale herkomst og befolkning relationer kan Ohana bruges som en fleksibel
metode til at finde signaler om selektion der ikke kræver nogen forudgående
viden om kovariansen struktur, f.eks flaskehalseffekten eller lokal tilpasning.

Statistisk modellering og numerisk optimering danner grundlaget for in-
ferens i både CoalHMM og Ohana. Optimering af modeller har været det
vigtigste tema i hele min ph.d., og det vil fortsætte med at forme mit arbejde
for de kommende år. De algoritmer og software jeg udviklet for at studere
historiske blanding af befolkinger og befolkningers evolution er en del af en
familie af machine learning metoder, og deres underliggende teknikker har en
bred vifte af applikationer, der går ud over blot bioinformatik og population-
sgenetik.
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Chapter 1

Introduction

Admixture, gene flow, and hybridization events play an important role in shap-
ing evolutionary history. Population geneticists have long recognized the im-
portance of quantifying ancestry admixing among populations, and its appli-
cations span many sub-fields such as conservation genetics, association study,
and migration pattern research [29]. With the decrease in costs to sequence
full genomes and the increase in accuracy of genotype technologies, it has be-
come possible to infer admixture from large genomic datasets. The availability
of large volumes of high quality data also calls for fast and accurate tools to
perform admixture-related analysis.

Similar to other branches of population genetics, the study of admixture is
a translation of scientific observations into mathematical models and its ma-
nipulations in order to produce quantitative predictions. We combine knowl-
edge from genetics, applied mathematics, and computer science to establish
working solutions of extracting meaningful information from a overwhelmingly
large volume of biological data.

A mathematical model is an abstract model that describes portions of
reality expressed in the language of mathematics. We call it a probabilistic
model if we use the mathematics of probability theory to express all forms
of uncertainty and noise associated with the model and to describe the data
that one can observe from the system. We use this kind of modeling for
parameter learning, information filtration, model prediction, etc. In our study,
we formulate mathematical abstractions to describe admixture in the context
of evolution.

Numerical optimization is an important method for finding values of vari-
ables that optimize an objective. The objective depends on certain character-
istics of a system, and the process of identifying the objective, variables, and
constraints for a given problem is called modeling. There is no universal opti-
mization algorithm but rather a collection of algorithms, each of which being
designed for a particular type of optimization problem [27]. In our study, we
numerically optimize the likelihoods of parametrized mathematical models.
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2 CHAPTER 1. INTRODUCTION

Learning the model parameters provides us a quantitative view of admixture
in the evolutionary history.

In this dissertation, we develop novel methods and present new tools to
study historical admixture and gene flow in the field of population genetics. In
Chapter 2, we present Admixture CoalHMM, a project that uses full genomic
sequences from a few modern-day individuals to perform demographic infer-
ence. In Chapter 3, we present Ohana, a project that uses site-independent
genomic data from many individuals to perform structural analysis, to infer
population trees, and to conduct selection study.

Admixture CoalHMM
CoalHMM is a hidden Markov model constructed on the foundation of co-
alescence theory with the key approximation that the distribution of local
genealogies is Markovian along the sequence alignment.

In Chapter 2, we extend the state-of-the-art CoalHMM framework with
heuristic-based optimizations, complex demographic model construction, and
most importantly, the capability of modeling admixture events. We have
validated this system through extensive simulation studies and have used it
to investigate the evolutionary histories of a range of species: baboons, bears,
equids, humans, and lynxes. A corresponding implementation of Admixture
CoalHMM is available on GitHub:

https://github.com/jade-cheng/Jocx

This work has resulted in two papers (one in preparation) that developed
the method. The first paper focused on the heuristic optimization algorithms,
and the second paper focused on the modeling of the admixture events. This
work has also resulted in three papers (two in preparation) that applied the
method to biological data.

• Jade Yu Cheng and Thomas Mailund. 2016 “A coalescent hidden Markov
model for inferring admixture relationships” (in preparation, Appendix
A).

• Jade Yu Cheng and Thomas Mailund. 2015 “Ancestral population ge-
nomics using coalescence hidden Markov models and heuristic optimi-
sation algorithms” Computational Biology and Chemistry, 57, pp.80-92.
(Appendix B).

• Tianying Lan, Jade Yu Cheng, Aakrosh Ratan, Webb Miller, Stephan
C. Schuster, Karyn Rode, Todd Atwood, Sean Farley, Dick Richard
T. Shideler, Sandra L. Talbot, Thomas Mailund, Charlotte Lindqvist.
2016 “Genome-wide evidence for a hybrid origin of modern polar bears”
bioRxiv, p.047498.
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Ohana
Over the past two decades, population geneticists have begun using unsuper-
vised learning methods to analyze population structure. While we have made
great strides, the effort to improve the accuracy and speed never diminishes.
In addition, a need has emerged to identify selection signals while fully taking
advantage of the structured data.

In Chapter 3, we develop a suite of statistical methods to infer individ-
ual ancestries, to estimate population covariances, and to detect covariance
outliers as selection signals. We have validated different stages of this system
through simulation studies, and we have used the methods in several collabo-
rative studies with great success. A corresponding implementation, along with
installation instructions, documentation, and example workflows, is available
on GitHub:

https://github.com/jade-cheng/ohana

This work has resulted in four papers, two that developed the methods
(one in the planning stage) and two that applied the methods to biological
data.

• Jade Yu Cheng, Thomas Mailund, and Rasmus Nielsen. 2016 “Ohana,
a tool set for population genetic analyses of admixture components”
Submitted to Bioinformatics (Appendix C)

• Georgios Athanasiadis, Jade Yu Cheng, Bjarni J. Vilhjálmsson, Frank
Grønlund Jørgensen, Thomas D. Als, Stephanie Le Hellard, Thomas
Espeseth, Patrick F. Sullivan, Christina M. Hultman, Peter Kjærgaard,
Mikkel Heide Schierup, Thomas Mailund. 2016 “Nationwide genomic
study in Denmark reveals remarkable population homogeneity” to ap-
pear in Genetics (Appendix E)

• Anna-Sapfo Malaspinas, Michael C Westaway, Craig Muller, Vitor C
Sousa, Oscar Lao, Isabel Alves, Anders Bergström, Georgios Athanasiadis,
Jade Y Cheng, . . . , Eske Willerslev. 2016 “The genomic history of Aus-
tralia” to appear in Nature (Appendix D)

Overview
Throughout this dissertation, we study admixture through mathematical mod-
eling and numerical optimization. In Chapter 2, we build a complex statistical
model using two major concepts, continuous time Markov chains and hidden
Markov models. Because of the non-analytical procedure of the likelihood
computation, we investigate a range of black-box style optimizers with a spe-
cial emphasis on heuristic-based evolutionary algorithms. In Chapter 3, we



4 CHAPTER 1. INTRODUCTION

obtain the analytical forms of Ohana’s statistical models. Because of the
extensive number of model parameters, we develop two sequential quadratic
programming methods tailored for the problem. We also describe the Nelder-
Mead simplex method for optimization tasks dealing with small-dimensioned
parameter spaces.

In each of the following chapters, we will begin with an introduction to
the field and its state-of-the-art research. Next, we will detail the mathemat-
ical models of the framework and discuss the optimization techniques created
for these models. We will demonstrate simulation studies and present real
genomic data analysis. Each chapter will end with remarks regarding the
models, optimizations, and inference results.



Chapter 2

Admixture CoalHMM

2.1 Introduction

Coalescence theory describes a class of retrospective modeling in population
genetics [9]. In coalescence theory, we represent the ancestries of current day
genes as gene genealogies, similar to species genealogies. We assign proba-
bilities to all possible genealogies that could have created the gene variations
we see in present samples. The classical coalescence model is described as
a continuous time Markov process running backward in time, during which
events such as coalescence and recombination happen.

Considering coalescence events exclusively, gene genealogies are tree struc-
tures, but after involving recombination events, a lineage can also split into two
backward in time. The outcome of both processes is a directed acyclic graph
rather than a tree. We call this an ancestral recombination graph (ARG).
We can consider an ARG as a collection of trees merged together, where each
position on the genome takes a single tree as its local genealogy.

Armed with coalescence theory, we can model structured populations by
controlling the possibility of coalescence because only samples residing in the
same population can coalesce. We assign lineages to different populations.
When the populations are isolated, no coalescence can occur. When migra-
tions starts coalescence occurs, and it happens at a rate related to the rate
of migration. We can also model population splits and admixture events by
re-assigning lineages to reflect these changes.

The coalescence hidden Markov model is a hidden Markov model (HMM)
constructed on the foundation of coalescence theory with the key approxima-
tion that the distribution of local genealogies is Markovian along the sequence
alignment. Being Markovian means the genealogy tree at one alignment loca-
tion depends on only the genealogy tree at the previous alignment location and
none of the earlier locations. This allows us to investigate only two loci at a
time, and the joint probability of two neighboring genealogies would form the
transition probabilities for the HMM rather than exploring the entire ARG.
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6 CHAPTER 2. ADMIXTURE COALHMM

In the family of coalescence HMM based methods, PSMC developed by
Li and Durbin [20] leads the way of popularity. PSMC stands for pairwise
sequentially Markovian coalescent, and it focuses on modeling varying coales-
cent rates over time. As the name indicates, PSMC models a pair of sam-
ples, possibly two haplotypes of one individual. MSMC [31] is the successor of
PSMC, and it stands for multiple sequential Markovian coalescent. Compared
to PSMC, MSMC increases the inference power for recent history. MSMC also
incorporates the capability to estimate population splits. CoalHMM described
in [21] uses continuous Markov chain to explore all possible configurations of
samples with respect to population structures. The modeling in CoalHMM is
similar to PSMC and MSMC but more flexible and complex. The estimated
quantities, hence the goals, are also different. PSMC focuses on recovering
effective population sizes over time. CoalHMM attempts to recover the de-
mography including population splits and all forms of gene flow.

Even with the approximation of being Markovian along the sequence, coa-
lescence HMMmodeling is still computational expensive and nearly impossible
to scale when the number of samples increases. We can further restrict multi-
furcating trees because, probabilistically speaking, they occur very rarely and
can be ignored. The complexity situation, however, does not change. To see
this, we can simply consider the number of local genealogies of K samples as
NK . Increasing to K + 1 we have NK+1 = NK × (2K − 2) + 1. 2K − 2 is
the number of edges in the binary tree with K leaves, NK × (2K − 2) is the
number of ways to insert the new node on an existing edge, and the 1 is for
the new node to form an outgroup of itself. This recursive relation defines an
exponential growth. To complicate the matter, we also discretized time. This
corresponds to forming different trees by varying branch lengths. To circum-
vent this obstacle but maintain the capability of analyzing multiple sequences,
we use a composite likelihood approach over HMMs constructed from pairwise
sequence alignments.

2.2 Mathematical models

Hidden Markov model

The observations of this HMM are the symbols on the sequence alignment.
The possible outcomes, therefore, are being the same, different, or unknown
due to missing data. The hidden states of this HMM are the different coales-
cent trees that could have caused such sequence alignment. Since we consider
just two sequences, the coalescent trees, i.e. the hidden states, are just the
time points when coalescence takes place between the two samples. The num-
ber of hidden states is therefore determined by the total number of time slices.

Assume we have k time slices with break points τ0, τ1, · · · , τk. HMM state
i corresponds to the two samples coalescing in the time interval [τi, τi+1],
where τk = ∞, implying the two samples eventually coalesce in one of the
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given time slices. For example, in Figure 2.1 we have four HMM states, two in
the migration period and two in the ancestral period. Since samples reside in
two different populations, no coalescent events can occur during the isolation
period.

HMM   state #1

HMM   state #2

HMM   state #3

HMM   state #4

τ0

τ1

τ2

τ3

τ4

Isolation

Migration

Ancestral

Time

Figure 2.1: Example HMM hidden states for two samples in a demography
that involves an isolation period, a migration period, and an ancestral period.
During the migration and ancestral periods, coalescence is possible between
the samples. Then number of hidden states is determined by the discretization
of time for the periods when coalescence is possible.

Conditional on the hidden states, HMM emission probabilities are the
probabilities of seeing a certain alignment column. Similar to other coalescence
HMM methods, we apply Jukes-Cantor’s substitution model [15], which is a
simple mutation model in which the rate of substitution λ is constant.

Transition probabilities

CoalHMM uses the continuous time Markov chain (CTMC) to explicitly ex-
plore all possible nucleotide configurations given a population structure. From
the CTMC, we calculate the probability of samples starting and ending with
certain configurations. Concatenating the CTMCs for a sequence of time slices
gives us the probability of a certain sequence of events. In particular, we are
interested in all of the probabilities of two neighboring nucleotides reaching
their common ancestors.

Continuous time Markov chain

To compute the joint probability of two neighboring genealogies, we explicitly
evaluate all states of a two-loci coalescent process [10, 21, 32, 33]. Figure2.2
shows the state space for two samples in a single population, the single CTMC.

In our implementation, we represent each state as follows. The sets {1}
and {2} denote a locus on sequence 1 and sequence 2 and that they have not
found their common ancestor. The set {1, 2} denotes an ancestral linkage of
{1} and {2}. The two neighboring nucleotides are represented as a pair of such
states; for example ({1, 2}, {1}) denotes a lineage in which the left nucleotide
has found a common ancestor, and the ancestor is linked to a neighboring



8 CHAPTER 2. ADMIXTURE COALHMM

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Figure 2.2: Graphical representation of the single CTMC, where two samples
reside in a single population. The samples are free to coalesce and recombine.

nucleotide from just sequence 1, which has not yet found a common ancestor
with sequence 2. Finally, to assign lineages to populations, we pair them with
a population symbol, for example (1, ({1, 2}, {1})) denotes a two-nucleotide
lineage ({1, 2}, {1}) residing in population 1. A set of all possible configura-
tions is shown in Figure 2.3, which forms the set representation of the single
CTMC shown in Figure 2.2

0    {(0, ({1}, {})), (0, ({2}, {})), (0, ({}, {1})), (0, ({}, {2}))}
1    {(0, ({1}, {1})), (0, ({2}, {})), (0, ({}, {2}))}
2    {(0, ({1}, {2})), (0, ({2}, {})), (0, ({}, {1}))}
3    {(0, ({1}, {})), (0, ({2}, {1})), (0, ({}, {2}))}
4    {(0, ({1}, {})), (0, ({2}, {2})), (0, ({}, {1}))}
5    {(0, ({1}, {1})), (0, ({2}, {2}))}
6    {(0, ({1}, {2})), (0, ({2}, {1}))}
7    {(0, ({1, 2}, {})), (0, ({}, {1})), (0, ({}, {2}))}
8    {(0, ({1, 2}, {1})), (0, ({}, {2}))}
9    {(0, ({1, 2}, {2})), (0, ({}, {1}))}
10   {(0, ({1}, {})), (0, ({2}, {})), (0, ({}, {1, 2}))}
11   {(0, ({1}, {1, 2})), (0, ({2}, {}))}
12   {(0, ({1}, {})), (0, ({2}, {1, 2}))}
13   {(0, ({1, 2}, {})), (0, ({}, {1, 2}))}
14   {(0, ({1, 2}, {1, 2}))}

Figure 2.3: Set representation of the single CTMC. The corresponding graph-
ical representation is shown in Figure 2.2.

The rates of state transitions in this CTMC directly follow the rates of
different actions, i.e. coalescence, recombination, and migration. Merging
two samples of one locus requires a coalescent event at this locus. Linking
two samples at two loci requires a coalescent event somewhere else on the
sequence. Disconnecting two samples at two loci requires a recombination
event. Relocating a lineage requires a migration event. If one CTMC state
is not reachable from another by any of these actions, the rate of transition
would be zero. Table 2.1 shows the rate matrix for the single CTMC shown
in Figure 2.2, where R is the recombination rate, and C is the coalescent rate.
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Q  |  0    1    2    3    4    5    6    7    8    9    10   11   12   13   14
---+--------------------------------------------------------------------------
0  |  -    C    C    C    C    0    0    C    0    0    C    0    0    0    0
1  |  R    -    0    0    0    C    0    0    C    0    0    C    0    0    0
2  |  R    0    -    0    0    0    C    0    0    C    0    C    0    0    0
3  |  R    0    0    -    0    0    C    0    C    0    0    0    C    0    0
4  |  R    0    0    0    -    C    0    0    0    C    0    0    C    0    0
5  |  0    R    0    0    R    -    0    0    0    0    0    0    0    0    C
6  |  0    0    R    R    0    0    -    0    0    0    0    0    0    0    C
7  |  0    0    0    0    0    0    0    -    C    C    0    0    0    C    0
8  |  0    0    0    0    0    0    0    R    -    0    0    0    0    0    C
9  |  0    0    0    0    0    0    0    R    0    -    0    0    0    0    C
10 |  0    0    0    0    0    0    0    0    0    0    -    C    C    C    0
11 |  0    0    0    0    0    0    0    0    0    0    R    -    0    0    C
12 |  0    0    0    0    0    0    0    0    0    0    R    0    -    0    C
13 |  0    0    0    0    0    0    0    0    0    0    0    0    0    -    C
14 |  0    0    0    0    0    0    0    0    0    0    0    0    0    R    -

Table 2.1: Rate matrix for the single CTMC. R is the recombination rate, and
C is the coalescent rate. The CTMC’s graphical representation is shown in
Figure 2.2, and the set representation is shown in Figure 2.3.

With the full CTMC state space and its rate matrix, according to the
CTMC theory we can compute the probability of observing a certain state
at a certain time by computing the matrix exponentiation. Figure 2.4 shows
another CTMC state space involving migration, and Table 2.2 shows its rate
matrix.

0 1 2

3 4 5

6 7 8

9 10 11

Figure 2.4: Graphical representation of another example CTMC. Two sam-
ples reside in a three populations. The second and third populations allow
migrations between them.

Joint probability

We divide CTMC states into four categories, begin (B), left (L), right (R),
and end (E). In a B type CTMC state, neither loci have coalesced, e.g. all
states in the CTMC shown in Figure 2.4 are type B. In an L type CTMC
state, the left and only the left locus has coalesced, e.g. state 7, 8, and 9 in
the CTMC shown in Figure 2.2 are type L. In an R type CTMC state, only
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Q  |  0    1    2    3    4    5    6    7    8    9    10   11 
---+------------------------------------------------------------
0  |  -    0    m32  m32  c3    0   c1    0   0    0    0    0
1  |  0    -    m23  m23  0    c2   0    c1   0    0    0    0
2  |  m23  m32  -    0    0    0    0    0    c1   0    0    0
3  |  m23  m32  0    -    0    0    0    0    0    c1   0    0
4  |  r    0    0    0    -    m32  0    0    0    0    c1   0
5  |  0    r    0    0    m23  -    0    0    0    0    0    c1
6  |  r    0    0    0    0    0    -    0    m32  m32  c3   0
7  |  0    r    0    0    0    0    0    -    m23  m23  0    c2
8  |  0    0    r    0    0    0    m23  m32  -    0    0    0
9  |  0    0    0    r    0    0    m23  m32  0    -    0    0
10 |  0    0    0    0    r    0    r    0    0    0    -    m32
11 |  0    0    0    0    0    r    0    r    0    0    m23  -

Table 2.2: Rate matrix of the CTMC shown in Figure 2.4. C1, C2, C3 are
the coalescent rates in three populations, respectively; m23 and m32 are the
migration rates going from population 2 to 3 and vice versa; finally R is the
recombination rate.

the right locus has coalesced, e.g state 10, 11, and 12 in the CTMC shown
in Figure 2.2 are type R. Finally, in an E type CTMC state, both loci have
found their common ancestors, e.g state 13 and 14 in the CTMC shown in
Figure 2.2 are type E.

0 1 2 3 4 5 6

B

7 8 9

L

10 11 12

R

13 14

E

Figure 2.5: State categorization for the single CTMC. The graphic representa-
tion of this CTMC is shown in Figure 2.2. This CMC contains 7 begin states
(B), 3 left states (L), 3 right states (R), and 2 end states (E)

Under the four category schema, we can split each CTMC’s rate matrix
and probability matrices into 16 sections. Shown in Figure 2.6 is an example of
one such categorization of the rate matrix for the single CTMC. Some sections
are entirely zeros. This is because coalescence is an irreversible process. Once
two samples find their common ancestor, they stay merged. These sections
are: L to B, R to B, E to B, L to R, R to L, E to L, or E to R. In other words,
valid transitions consist of only B to B, B to L, B to R, B to E, L to E, R to
E, and E to E.



2.2. MATHEMATICAL MODELS 11

Q  |  0    1    2    3    4    5    6    7    8    9    10   11   12   13   14
---+--------------------------------------------------------------------------
0  |  -    C    C    C    C    0    0    C    0    0    C    0    0    0    0
1  |  R    -    0    0    0    C    0    0    C    0    0    C    0    0    0
2  |  R    0    -    0    0    0    C    0    0    C    0    C    0    0    0
3  |  R    0    0    -    0    0    C    0    C    0    0    0    C    0    0
4  |  R    0    0    0    -    C    0    0    0    C    0    0    C    0    0
5  |  0    R    0    0    R    -    0    0    0    0    0    0    0    0    C
6  |  0    0    R    R    0    0    -    0    0    0    0    0    0    0    C
7  |  0    0    0    0    0    0    0    -    C    C    0    0    0    C    0
8  |  0    0    0    0    0    0    0    R    -    0    0    0    0    0    C
9  |  0    0    0    0    0    0    0    R    0    -    0    0    0    0    C
10 |  0    0    0    0    0    0    0    0    0    0    -    C    C    C    0
11 |  0    0    0    0    0    0    0    0    0    0    R    -    0    0    C
12 |  0    0    0    0    0    0    0    0    0    0    R    0    -    0    C
13 |  0    0    0    0    0    0    0    0    0    0    0    0    0    -    C
14 |  0    0    0    0    0    0    0    0    0    0    0    0    0    R    -

B         B
B         L
B         R
B         E
L         B
L         L
L         R
L         E
R         B
R         L

R         E
E         B

E         R
E         E

R         R

E         L

Figure 2.6: The categorized rate matrix for the single CTMC. This CTMC’s
graphical representation is shown in Figure 2.2 and the set representation is
shown in Figure 2.3.

The transition probability matrix has size N by N , where N is the number
of hidden states. With the CTMC and a specific path going through each time
slice, we can compute the probability of this particular path. Combining all
paths that have the same beginning, State #5 shown in Figure 2.5, and one
of the E states, we can compute a joint probability. State #5 is a B state,
and it depicts the modern-day condition of two loci on two sampled sequences.
Any one of the E states would suffice as the ending condition because we are
concerned with only the coalescence status of the two loci.

Let’s call the joint probability matrix J , where Jij is the probability of
observing coalescence of the left nucleotide in time slice i and coalescence of
the right nucleotide in time slice j. Let’s call the HMM’s transition matrix
T . To get Tij , we normalize row i in J ,Tij = Jij/

∑N
m Jmj . To calculate Jij ,

we use the probability matrices produced by the sequence of CTMCs. Let’s
call the initial state the zero state. State #5 shown in Figure 2.5 is the zero
state for the single CTMC. Shown below are the three possible ways to reach
a type E state.

1. (B → B)zero or more , B → E

2. (B → B)zero or more , B → L, (L→ L)zero or more , L→ E

3. (B → B)zero or more , B → R, (R→ R)zero or more , R→ E (2.1)

The joint probability matrix is symmetric because the chance of taking
path #3 is the same as taking path #2. According to CTMC theory, we
compute the probability matrix for each time slice P = exp (Q ·∆t), where
∆t is the duration of the time slice. We need the probability matrices from the
most recent time to the time slice when both loci find their common ancestor.

We consider a collection of event sequences by multiplying together the
probability matrices. This corresponds to integrating all paths that belong
to a certain type. For example, (P )BB represents the top-left slice of P , like
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τ0

τ1

τ2

τ3

Time

Figure 2.7: Example probability matrices over time slices. This diagram illus-
trates one particular path of two samples starting from a B state and ending
in a E state. Specifically, the two loci are connected in the modern samples, i.e
two adjacent loci on the alignment. Going backward in time, nothing changed
in the first time slice; the left locus coalesced during the second time slice, and
the right locus coalesced during the third time slice.

shown in Figure 2.6. The sum of all values in (P )BB is the probability of
starting the time slice in one of the begin states and ending the time slice also
in one of the begin states. The exact begin and end states are not important.
Together with the three paths, we can now derive the analytical forms to
calculate the joint probability matrix.

Jij =

{ ∑
α

∑
β

Maβ when i ≤ j

Jji when i > j.
(2.2)

Mij =
{

(P0)0B × · · · × (Pi−1)BB × (Pi)BL × (Pi+1)LL × · · · × (Pj−1)LL × (Pj)LE i < j

(P0)0B × (P1)BB × · · · × (Pi−1)BB × (Pi)BE i = j

(2.3)

For example, the following is the joint probability of observing a sequence
of events through three time slices in which the left locus coalesces in the
second and the right locus coalesces in the third. One such path is illustrated
in Figure 2.7

J23 =
∑
α

∑
β

(
(P0)0B × (P1)BL × (P2)LE

)
αβ

Figure 2.8 shows two other possible paths. Explicitly listing all possible
paths becomes impossible when we have more time slices and more types of
CTMCs. The number of combinations increases exponentially.

Projection Matrix

Under different CTMCs, matrix dimensions or the mapping of B, L, R, and E
would fail to match. Mostly likely both properties would fail. This forbids con-
catenating probability matrices through multiplication. When this happens,
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τ0

τ1

τ2

τ3

τ0

τ1

τ2

τ3

Figure 2.8: Another two paths covered by joint probability J23. The path
shown in Figure 2.7 is also covered by J23.

we need projection matrices to move samples from one kind of CTMC state
space to another. We obtain this state mapping by resetting population labels
in the set representations of the CTMC states like the ones shown in Figure
2.3. For example, if CTMC state (1, ({1}, {1})) , (2, ({2}, {2})) in a two-sample
two-population CTMC were to be merged into a state in a single-population
CTMC, we could relabel the population symbols, (0, ({1}, {1})) , (0, ({2}, {2})).
Extending to all state configurations, if we were to connect the aforementioned
two kinds of CTMCs, we would have the following projection mapping.

Isolation CTMC
0 1 2 3

Single CTMC

0 14 5

2 3 6 7 8

9 10 11 12
13 14

No Match

Match

Figure 2.9: Graphical representation of the projection mapping from the isola-
tion CTMC to the single CTMC for two samples. The single CTMC’s graph-
ical representation is shown in Figure 2.2, and its set representation is shown
in Figure 2.3. The isolation CTMC involves two isolated populations and two
samples each residing in one population.

To place the projection matrix in the context of calculating the joint prob-
abilities, we would insert appropriate projection matrices into the chain of
matrix multiplications. For example, in the situation illustrated in Figure
2.10, we have three time slices in which two belong to a two-population
migration CTMC and one belongs to a single-population ancestral CTMC.
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  | 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14
--+---------------------------------------------
0 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
1 | 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
2 | 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
3 | 0  0  0  0  0  1  0  0  0  0  0  0  0  0  0

Table 2.3: Matrix representation of the projection mapping from the isolation
CTMC to the single CTMC for two samples. The four isolation CTMC states
map to four single CTMC states. We record 1 for each mapping and 0 for the
rest.

We would like to compute (P0)0B × (P1)BL × (P2)BE , where state zero is
the initial state reflecting the modern sample configuration of the two loci.
But the first matrix multiplication is illegal because P0 has a dimension
of 4 × 4 but P1 and P2 have a dimension 15 × 15. We must instead do
(P0)0B×(PIsolation→single)BB×(P1)BL×(P2)BE , where Pisolation→single, as shown
in Figure 2.9, and Table 2.3 maps states between two CTMCs.

τ0

τ1

τ2

τ3

Time

Ancestral

Isolation

Figure 2.10: Example probability matrices. Joint probability J23 covers the
illustrated path. To compute J23 requires probability matrices from three time
slices and the CTMC projection matrix given in Table 2.3.

Admixture CoalHMM

With a foundation of CTMC and HMM constructions, we proceed to inves-
tigate a special kind of demographic that involves gene flow in the form of
admixture events. We try to infer parameters that are associated with the
admixture events. We call this modeling admixture CoalHMM.

Introduction to admixture

In previous CoalHMM models, gene flow happens as continuous migration.
This does not, however, model cases in which gene flow occurs quickly among
populations, possibly caused by certain environmental changes. We call the
latter admixture events, and we model this kind of gene flow as single instanta-
neous occurrences rather than periods with migration rates. Admixture events
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introduce changes to the proportions of samples in various of populations, like
a reshuffling with controlled rates.

τ0

τ1

τ2

τ3

Time

Isolation

Ancestral

Middle

τ4

τ5

Admixture

Figure 2.11: Admixture example. This path illustrates two samples residing
in two isolated populations for the first time slice, experiencing an admixture
event between the first and second time slices, and eventually entering a period
when the two populations become a single ancestral population. The admix-
ture event introduced lineage exchange between the populations and hence
formed a different CTMC. In this case, the middle period CTMC is identical
to a two-population migration CTMC.

Figure 2.11 shows an example of an admixture event occuring during a
two-population isolation period. Without this admixture event, the middle
epoch would also be an isolation epoch. With the gene flow introduced by the
admixture event, the middle epoch behaves like a two-population migration
epoch. During the admixture event, samples in the two isolated populations
are shuffled. Any combination of togetherness is allowed. The resulting CTMC
configuration is, therefore, identical to one that describes a two-population
migration scenario.

Admixture projection

It comes down to the construction of admixture projections, which are inserted
into the chain of matrix multiplications to accommodate the sample reordering
during admixture events. We compute the admixture projection mapping by
explicitly calculating the probabilities of starting from a CTMC state and
ending at a CTMC state after going through an admix event. In other words,
we fully describe the admixture effect as a collection of probabilities, pij , for
moving a sample from population i to population j.

To do so, we first identify the number of pieces, i.e. connected components,
in a source state. We then identify the location for each piece. In the example
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illustrated in Figure 2.12, we have two populations and two connected pieces.
In the source states, each population has one piece.

Source state:

Destination states:

a. {1, ({1},{})} {2, ({2},{1,2})}

a. {1, ({1},{})} {2, ({2},{1,2})}

b. {1, ({1},{})} {1, ({2},{1,2})}

c. {2, ({1},{})} {2, ({2},{1,2})}

d. {2, ({1},{})} {1, ({2},{1,2})}

Figure 2.12: Admixture projection source and destination example. During an
admixture event between two populations, each connected component has a
choice of moving to the other population or staying in its original population.
These movements change the state configuration.

During an admixture event, a connected component may either move or
stay, so there are kn outcomes, where k is the number populations involved in
this demographic and n is the number of pieces in the source state. In Figure
2.12, we have k = 2 and n = 2, and therefore, 22 = 4 possible outcomes, i.e.
4 possible destination states.

To calculate the probabilities of transiting to each one of the possible
destination states, we use admixture proportions, which describe the strength
of a historical admixture event. The proportions are part of model parameters.
In our two-population case, we simply iterate the binary representation of
values from 0 to 4, and assign a probability for each one accordingly. Table
2.4 shows an example of an admixture proportion of p = 0.1 for a sample
going from population 1 to 2 and a proportion of q = 0.2 for a sample going
from population 2 to 1.

binary index pieces destination probability
0d = 00b nobody moves a (1− p) · (1− q) = 0.72
1d = 01b left piece stays; right piece moves b (1− p) · q = 0.18
2d = 10b left piece moves; right piece stays c p · (1− q) = 0.08
3d = 11b both pieces move d p · q = 0.02

To form the admixture projection matrix, we perform this calculation for
all source states, which are CTMC states immediately prior to the occurrence
of the admixture event. The sum of all probabilities from one source state is
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..|... b ...... d ...... a ...... c ...
--+------------------------------------
. |    .        .        .        .
. |    .        .        .        .
. |    .        .        .        .
a |   0.18     0.02     0.72     0.08 
. |    .        .        .        .
. |    .        .        .        .
. |    .        .        .        .

Table 2.4: Example admixture projection calculation. This example follows
what is shown in Figure 2.12. With specific admixture proportions, p = 0.1
and q = 0.2, we can compute the probability of arriving at each destination
state. The proportions p and q are the probabilities of a sample moving from
population 1 to 2 and from 2 to 1, respectively.

always one, (1− p) · (1− q) + (1− p) · q + p · (1− q) + p · q = 1 + pq − p −
q + q − pq + p− pq + pq = 1. A source state inevitably turns into one of the
destination states. From the calculations in Table 2.4, we can fill one row in
the admixture projection matrix.

HMM construction

Depending upon the availability of the samples from extant populations, we
can construct HMMs from pairwise alignments of different configurations. Fig-
ure 2.13 to 2.16 demonstrate four ways of constructing HMMs from two se-
quences under a three-population admixture demography.

A BC

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

Figure 2.13: CTMC construction for HMM with two samples both from a
source population. The model parameters are coalescent rate and recombina-
tion rate.

The HMM shown in Figure 2.13 requires one type of CTMC. In this
CTMC, we have a single population. The two samples coalesce and recombine
freely. This CTMC contains 15 states.

The HMM shown in Figure2.14 requires two types of CTMCs. The recent
CTMC involves two isolated populations. During this time, samples located
in the same population coalesce and recombine freely—but not across popu-
lations. This CTMC contains 4 states. The distant CTMC involves a single
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8 9 10 11
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A BC

AB split

1

1

Figure 2.14: CTMC construction for HMM with two samples, one from each
of the two source populations. The model parameters are AB split, coalescent
rate, and recombination rate.

ancestral population. During this time, samples coalesce and recombine freely.
This CTMC contains 15 states.

The HMM shown in Figure2.15 requires four types of CTMCs. The most
recent CTMC is the same as the ones from Figure 2.13 and 2.14. The second
most recent CTMC involves three populations. During the admixture event,
a sample can move to one of the two populations, each with a certain prob-
ability. The CTMC state space is equivalent to allowing migration between
the second and third populations while keeping the first population isolated.
Samples in the second and third populations, therefore, coalesce, recombine,
and migration freely—but not with samples in the first population. This
CTMC contains 12 states. The second most distant CTMC involves two iso-
lated ancestral populations. During this time, samples coalesce and recombine
freely within a population. Since the first population is formed by merging the
first two populations from the previous CTMC, the situation is equivalent to
having an asymmetric migration, i.e. allowing for migration from the second
population to the first but not the other way around. This CTMC contains 29
states. The most distant CTMC involves a single ancestral population, where
all samples coalesce and recombine freely. This CTMC contains 15 states.

The HMM shown in Figure2.16 requires three types of CTMCs. The recent
CTMC involves a single population, where all samples coalesce and recombine
freely. This CTMC contains 15 states. In the middle CTMC, all samples are
free to coalesce, recombine, and migrate freely. This CTMC contains 94 states.
The distant CTMC involves a single ancestral population. During this time,
two pairs of samples coalesce and recombine freely. This CTMC contains 15
states, the same as the recent CTMC.
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Figure 2.15: CTMC construction for HMM with two samples, one from the
admixed population, the other from one of the two source populations. The
model parameters are admixture time, AC split, AB split, coalescent rate, and
recombination rate.

Composite likelihood

When we have a multiple sequence alignment, the idea of integrating paths
belonging to a certain category would still work, but it becomes more tedious.
Instead of a 4 × 4 dicing of the rate and probability matrices, the type of
CTMC stats would increase exponentially as the number of the sequence in-
creases. To take advantage of multiple sequence alignments while avoiding
the computational complexity from exact integration, we apply a composite
likelihood approach.

In the composite likelihood schema, we extract all pairwise alignments from
a multiple sequence alignment and form a HMM for each pairwise alignment as
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Figure 2.16: CTMC construction for HMM with two samples both from the
admixed population. The model parameters are the admix time, AB split,
coalescent rate, and recombination rate.
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Figure 2.17: Example models that can be constructed using pairwise align-
ments and the composite likelihood approach.

described in previous sections. We infer parameters based on the summation of
the likelihood values from all HMMs. Using the composite likelihood schema
and the HMMs shown from Figure 2.13 to Figure 2.16, we can construct a
range of admixture CoalHMMmodels. These models are useful under different
conditions depending on the availability of data from extant populations.

A B C
samples per
populationModel

Population

#2

#3-3

#3-2

#3-1

#1

Figure 2.18: A summary for models described from Figure 2.19 to Figure 2.23.

We use Model #1 when we have access to only the admixed population.
In this case, we make inference from two sequences collected from population
C and build a single HMM from them.

If we have data for the admixed population and one of the two source
populations, we can use Model #2. We construct three HMMs: one using
two sequences, both from the admixed population (the same as in Model #1);
one using two sequences, both from the source population; and one using two
sequences, one from each population.

If we have data from all three populations, we have more ways to explore
the data. In Model #3-1, we use only one sample per population. For Model
#3-2, we use two samples per population, and we construct one HMM for
each of the six types of HMMs. For Model #3-3, we construct fifteen HMMs
for all pairwise alignments of the six samples, two from each population.

2.3 Parameter inference

In the maximum likelihood estimate, we infer CoalHMM parameters by op-
timizing the log-likelihood value calculated from HMM’s forward algorithm.
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AB split

Figure 2.19: Model #1: Admixture model with only the admixed population.
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Figure 2.20: Model #2: Admixture model with the admixed population and
one of the two source populations.
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Figure 2.21: Model #3-1: Full admixture model with one sample from each
population.
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Figure 2.22: Model #3-2: Full admixture model with two sample from each
population and six HMMs.
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Figure 2.23: Model #3-3: Full admixture model with two sample from each
population and fifteen HMMs.

We treat this processes as a black-box style optimization. We implement
and compare two types of optimization processes: the deterministic simplex
approach and nondeterministic evolutionary algorithms.

Nelder-Mead simplex method

John Nelder and Roger Mead introduced the Nelder-Mead simplex method
in 1965 [25] as a technique to minimize an objective function in a many-
dimensional space. The pseudo-code below summarizes this method.

This method uses several algorithm coefficients to determine the amount of
effect of possible actions. They are the reflection coefficient ρ, the expansion
coefficient χ, the contraction coefficient γ, and the shrinkage coefficient σ.
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Algorithm 1 Nelder-Mead simplex method
repeat
evaluate each point in the simplex using the objective function
determine the point pmin with the lowest fitness
reflect pmin through the centroid of the remaining vertices to pr
if the fitness at pr is the highest in the simplex then
expand pr away from the centroid to pe
use pe in place of pmin

else if the fitness at pr is still the lowest then
contract pr toward the centroid to point pc
if the fitness at pc is no longer the lowest then
use pc to replace pmin

else
determine the point pmax with the highest fitness
shrink all points in the simplex around pmax

end if
else
use pr to replace pmin

end if
until termination condition is reached

Standard values recommended in [3] are ρ = 1, χ = 2, γ = 1/2, andσ = 1/2.

Evolutionary algorithms

Evolutionary algorithms belong to a subfield of artificial intelligence in com-
puter science. They are population-based heuristic optimization methods in-
spired by biological processes such as evolutionary reproduction and insects
swarming. We investigate and implement two methods from this class, the
genetic algorithm (GA) and the particle swarm optimization (PSO)

Genetic algorithm (GA)

John Holland first introduced GAs in the 1970s [13]. The idea is to encode each
solution as a chromosome-like data structure and operate on them through
actions analogous to genetic alterations, which usually involves selection, re-
combination, and mutation. For each type of alteration, people have developed
different techniques.

Selection determines a subset of the current population to use when form-
ing the next generation. The Roulette Wheel Selection algorithm by [12] and
Stochastic Universal Sampling by [2] lead the way as two fitness proportion se-
lection methods. Tournament Selection by [23] is ranking-based, and it selects
the highest fitness value from a random subset of the population.
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Recombination, also known as crossover, is the second stage of a GA. It
combines the selected individual to breed the next generation. Similar to the
biological process, crossover can happen with arbitrarily many junction points.
The uniform crossover scheme by [34], however, does not have a close biological
analogue. When a complex scheme fails to offer a gain in optimization, we
resort to a simpler scheme, such as one-point crossover.

Mutation is the last stage. It introduces a single point of modification
to the solution represented by the newly-generated population. To create a
random change, naturally, we can use various processes for random sampling.
Uniform mutation from [22] and Gaussian mutation from [5] are the most
common choices. In practice, the selection of mutation greatly influences the
optimization process.

Particle swarm optimization (PSO)

Eberhart and Kennedy first introduced PSO in 1995 [6] as an optimization
technique relying on stochastic processes, similar to GAs. As its name implies,
each individual solution mimics a particle in a swarm. Each particle holds a
velocity and keeps track of the best positions it has experienced and best posi-
tion the warm has experienced. The former encapsulates the social influence,
i.e. a force pulling towards the swarm’s best. The latter encapsulates the
cognitive influence, i.e. a force pulling towards the particle’s best. Both forces
act on the velocity and drive the particle through a hyper parameter space.

Parameter space rescaling

To allow the optimization procedures to cover a wide range of values, we
perform a log scaling of the parameter space prior to optimizing, and we scale
the estimated quantities reversely before each objective function evaluation.

2.4 Simulation study

To evaluate our framework, we conduct an extensive amount of simulations.
In this section we describe two main sets of simulation studies. In the first,
we use the program ms [14] to generate ancestral recombination graphs under
standard neutral evolutionary models with recombination, speciation, vari-
able populations, migrations, etc. We then use the seq-gen [30] program to
produce sequence samples of length 10 Mbp. Using the phylogenetic trees sim-
ulated by ms as input, seq-gen evolves the sequences along the phylogeny.
In the second, we use the program fastsimcoal2 [7, 8] for continuous-time
sequential Markovian coalescent simulations. We simulate demographics in-
volving splitting and fusing of populations, admixture events, changes in mi-
gration matrices, etc. From the simulated polymorphic sites of a pairwise
sequence, we calculate the HMM observations.
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CoalHMM model with isolation and migration

The isolation model is the simplest demographic model in our simulation
study. The model contains three parameters: a coalescence rate, a recombi-
nation rate, and a split time, where the ancestral population is split into two
isolated populations [21].
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Figure 2.24: Isolation model. Parameter estimations are good.

The isolation with initial migration model is the second simplest model.
This model contains five parameters: the time period during which the two
populations are isolated, the time period during which migration persists, a
shared coalescence rate for all populations, a migration rate for the migration
epoch, and a recombination rate.
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Figure 2.25: Isolation with migration model. Parameter estimations are good.

The isolation with initial migration epochs model extends from the
isolation with initial migration model. This model allows for multiple epochs
within the isolation period, the migration period, and the ancestral period.
Both coalescence rates and migration rates can vary freely between epochs.
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Figure 2.26: Isolation with migration 3-epochs model. Parameter estimations
are good except for the coalescent rate far back in time.
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Figure 2.27: Isolation with migration 6-epochs model. Parameter estimations
are good except for the coalescent rate far back in time.

CoalHMM model with admixture

In this section, we investigate the performance for admixture CoalHMM mod-
eling. First we show the estimation accuracy. To do this, we simulate se-
quence data under different demographic scenarios, and we apply a range of
admixture models. Second, we show the effect when the admixture model is
mis-specified. In other words, we show the admixture inference results when
the sequences are simulated under demographic scenarios that are different
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Figure 2.28: Isolation with migration 9-epochs model. Parameter estimations
are good except for the coalescent rate far back in time.

from what is specified by the admixture CoalHMM model.

Admixture CoalHMM estimation accuracy

Figure 2.29 summarizes the estimation accuracy of the five admixture models
outlined in Figure 2.18. Details of the model constructions using the composite
likelihood approach are illustrated from Figure 2.19 to Figure 2.23. Figure 2.30
shows the recovery of varying admixture proportions. Figure 2.31 shows the
recovery of varying coalescent rates.

Effect of wrongly specified demography

In parametrized modeling, the parametrizations of are not generally unique.
This brings forward the question about model mis-specification, which hap-
pens when the model described in the method fails to capture reality. In
this section, we show how the inference results are affected when the true
demography is different from what is modeled in admixture CoalHMM.

Admixture CoalHMM models summarized in Figure 2.18 model a three-
population admixing scenario, where two populations are related to the an-
cestors of the two source populations of an admixture event, and the third
population is the direct descendant of the admixed population. Many alter-
native demographies exist for three populations. Figure 2.32 illustrates the
alternative where one population is in fact an out-group. Figure 2.33 illus-
trates the alternative where continuous gene flow occurs after the admixture
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event. Figure 2.34 illustrates the alternative where continuous gene flow oc-
curs between two ancestor populations. The admixture CoalHMM models
shown in Figure 2.18 fail to accurately describe any of these demographics.

From Figure 2.32 to Figure 2.34, we observe failed attempts when apply-
ing admixture CoalHMM on any of the mis-specified models. Some of them
are affected more dramatically than others. The existence of an out-group
significantly skews all admixture-related parameters, as shown in Figure 2.32.
The effect of continuous gene flow affects the estimates, but at different levels.
Ancient gene flow prior to the admixture event appears to have only a minor
effect, as shown in Figure 2.34, but recent gene flow skews admixture-related
estimates significantly, as shown in Figure 2.33.

2.5 Biological data analysis

We have applied admixture CoalHMM to several data projects, and we high-
light two data studies in this section. The first is a study of the admixture
history for the bear family including the brown bear, polar bear, ABC is-
land bear, and black bear. We used admixture CoalHMM to analyze these
bear species under various admixing scenarios. We mentioned this work in
the second method paper, included as Appendix B, and the analysis results
were also used to support the conclusions in [19]. We studied baboons in
another data project. As members of the baboon consortium, we used the
most probable admixture graph and analyzed several major species in the ba-
boon family, cynocephalus, ursinus, kindae, hamadryas, and papio. We are
currently composing this manuscript.

In both data projects, for each sample triplet, we analyzed the full au-
tosomal genome and obtained the variance in the estimates from a blocked
bootstrap with the genome split into 10Mb blocks and 100 repetitions. We
also performed simulation tests of goodness-of-fit and de-biasing of estimates.
To examine which parameters are likely to be biased, and by how much, we
simulated data with parameters in a grid of time points around the estimated
points and estimated the final parameters from the simulated data.

2.6 Concluding remarks

Three years ago, when I started my PhD in the field of population genetics,
I joined the CoalHMM project team and proposed to expand the existing
CoalHMM framework to study historical admixture. Prof. Thomas Mailund
and I identified several major stages towards this goal. Firstly, I would im-
prove the optimization module of the framework so that we could produce
reliable estimates especially when the number of model parameters increases.
Secondly, I should be able to build CoalHMM models in a modular fashion so
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that different model constructions would be possible. Finally, I would model
admixture events and estimate admixture-related model parameters.

The paper in Appendix A summarizes my work in the first two stages. I
investigated, implemented, and compared several black-box style optimization
techniques with the emphasis on heuristic-based evolutionary algorithms. This
paper also presents a range of models demonstrating the capability of complex
model construction. Finally, in this paper I present simulation studies to eval-
uate these new additions: the optimization module and model constructions.

The manuscript in Appendix B summarizes my work during the third
stage. I implemented admixture CoalHMM to infer historical admixture
events and constructed multiple admixing demographics. Admixture CoalHMM
not only learns the admixture time but also the proportions of gene flow from
different source populations. Also in this paper, I present a panel of simula-
tion evaluations, and I demonstrate good inference accuracy under different
demographics. I also show the effect of using admixture CoalHMM on wrongly
modeled demographics. Together, I present admixture CoalHMM a as new
tool to study historical admixture events.

I have applied admixture CoalHMM to several large collaborative projects.
As a member of the baboon consortium, I studied the admixing relationship
among several baboon species. I contributed in a bear gnomic study by an-
alyzing several bear species’ speciation times and admixing history. I also
analyzed equids, lynx, and human genome data using admixture CoalHMM.

Future work

The future of CoalHMM lies in the automation of model construction. To-
gether with the composite likelihood approach, I now have the means to
construct CoalHMM models for any given demography involving population
splits, continuous migration, and admixture events. In theory, I can estimate
model parameters and recover the evolutionary history depicted by any given
demography. In the current stage of CoalHMM’s development, model con-
struction is a case-by-base process. This framework would, however, be more
powerful if model construction were automated. It will be a significant un-
dertaking in the algorithm and software design. Besides that, the inference
procedure will face optimization challenges and state-space complexity issues.
The increased number of parameters calls for better optimization. Current
optimization methods do not scale well with the number of parameters. In
addition, the CTMC state-space grows exponentially with factors such as the
number of populations and the presence of gene flow. CTMC state-space di-
rectly concerns the complexity of matrix exponentiation, and because of that,
certain demographic epochs may become computational bottlenecks.

After automated model construction it comes model selection. With the
power to explore a range of demographics of different population splits and
gene flow, a natural question to ask is which demography is the best and
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should be proposed as the evolution history of the species under investigation.
Many model selection techniques exist, such as Akaike information criterion
and Approximate Bayesian computation. It is a straightforward task to in-
corporate model selection into the framework. The challenge, however, is
the sensitivity of the maximum likelihoods. In other words, the optimization
power and run-time complexity, as described in the previous paragraph, may
also pose potential difficulties to model selection.

I see the possibility of splitting the CoalHMM framework into two stages:
the model construction plus complexity prediction stage and the parameter
inference plus model selection stage. From the user’s point of view, the work-
flow would be as follows. First, in a hypothesizing phase, the user would
sketch several demographic scenarios. Second, in a modeling phase, the user
would use CoalHMM to outline several modeling plans. This step would also
include a complexity analysis that identifies parameter count for optimiza-
tion strength and CTMC state spaces for possible computational bottlenecks.
Third, in a inferencing phase, the user would execute the modeling plans and
infer parameters that describe the hypothesized demographics. Finally, in a
decision phase, the user would conduct model selection among the proposed
hypotheses and identify the best demography.

The first phase stems from the researcher’s understanding of the biolog-
ical data. The second phase should be computationally inexpensive, and it
should provide a guideline to refine the first stage. The third phase would be
expensive in terms of time, CPU, and space. I would advise a high perfor-
mance cluster service for this phase. Due to the limitations originating from
optimization and CTMC state space, the third and fourth phases might not
be feasible for complex demographies.
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Figure 2.29: Parameter estimation from five admixture CoalHMM models
under two demographic scenarios. One is distant back in time (top), and the
other is more recent (bottom).
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Figure 2.30: Admixture proportion estimations from five admixture
CoalHMM models under two demographic scenarios. One is distant back
in time (top), and the other is more recent (bottom).
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Model #1: admixed population · 1 HMM

Model #2: admixed population and one source population · 3 HMM

Model #3-1: all three populations · 3 HMM

Model #3-2: all three populations · 6 HMM

Model #3-3: all three populations · 15 HMM

~ Coalescent Rate Estimates ~

Figure 2.31: Coalescent rate estimations from five admixture CoalHMM mod-
els for a ranges of five different simulation values.
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Figure 2.32: Mis-specified demography type1. In this scenario, an outgroup
is modeled as a source population.
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Figure 2.33: Mis-specified demography type2. In this scenario, the admixed
population maintains a constant gene flow between the two source populations
after the admixture event.
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Figure 2.34: Mis-specified demography type3. In this scenario, the ancestors
of the two source populations go through a period of time when there is
continuous gene flow between them.



Chapter 3

Ohana

3.1 Introduction

The population genetics community has been using unsupervised learning
models to study population structure and individual admixture for the past
two decades [29]. This process assigns fractional memberships of a set of an-
cestry components to each individual. The natural next question to ask is
regarding the evolutionary relationships among these ancestry components.
Allele frequencies estimated during the structure analysis can provide us this
information [28]. Furthermore, researchers have also begun using allele fre-
quencies caused by population structure as evidence to detect ongoing posi-
tive selection [26]. Selection may increase the level of genetic differentiation
among populations by acting on local adaptation-related mutations. Selection
may also act on beneficial mutations that arise in specific geographical loca-
tions and cause a temporary increase in the level of population differentiation.
Local positive selection, therefore, could be responsible for loci exhibiting ge-
netic distances larger than the average genetic distance among the populations
[17, 26].

We present Ohana, a set of tools that starts with structure analysis, pro-
ceeds to population tree inference, and finally conducts selection analysis while
fully taking advantage of the structured genomic data. Ohana builds its math-
ematical models and optimization techniques on top of well-established meth-
ods. Ohana infers individual clustering from which we identify outliers for
selection analyses.

The current release of Ohana contains five programs: qpas, cpax, ne-
meco, selscan, and convert. qpas and cpax perform structure inference
using genotype observations or genotype likelihoods. To achieve this goal,
qpas and cpax use different algorithms to solve sequential quadratic program-
ming. qpas uses an adaptation of the active set algorithm, while cpax uses a
variation of the complementarity pivoting algorithm. At the current stage of
development, we recommend using qpas because it achieves better likelihoods

37
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in benchmark tests. Program nemeco infers population variances and covari-
ances assuming components are rooted at one of the populations. Program
selscan selects covariance outliers as candidates for selection study. Program
convert facilitates different stages of the analysis by providing file conver-
sions and fast approximations through five submodules, ped2dgm, bgl2lgm,
cov2nwk, nwk2svg, and nwk2cov.

The source code, installation instructions, high-level documentation, and
example workflows are available on GitHub.

https://github.com/jade-cheng/ohana

Detailed doxygen documentation is available at the following URL.

http://jade-cheng.com/ohana/

The rest of this section will be divided into four subsections. In the first
subsection, we will outline the probabilistic models used in the inference pro-
cesses. In the second subsection, we will describe the different numerical
optimization strategies and their mathematical derivations. In the third sub-
section, we will present simulation studies to evaluate Ohana. Finally in the
last subsection, we will analyze real genomic data and present their interpre-
tations. Except for the joint inference process, all modules are released on
GitHub.

3.2 Mathematical models
We outline two mathematical models, first to infer global ancestry and second
to infer population relations. We implement the first model in program qpas
and cpax. We implement the second model in program nemeco.

When performing data analysis, we first infer admixture using qpas or
cpax by supplying genetic data, either called genotypes or genotype likeli-
hoods. We then infer population covariances using nemeco by supplying
allele frequencies, a byproduct produced from the admixture inference.

Structure analysis

Structure analysis estimates overall genome-wide percentage contributions
from different ancestries for each sample individual. The main outcome is
a set of component labels and their percentages for each individual. The in-
put of this process is the genomic data containing certain markers from certain
individuals. This data can be genotype observations for high-coverage data or
genotype likelihoods for low- or medium-coverage data. The first piece of out-
put is percentage values indicating admixture proportions for each individual
at each component. The second piece of output is allele frequencies for each
component at each marker.
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Genotypes · G

Allele Frequencies · F
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Input:
Output:

Figure 3.1: An illustration of the input and output for program qpas and
cpax, the admixture inference module of Ohana. The genotype input, G ma-
trix shown above, can take one of two forms: genotype observations or geno-
type likelihoods. High-coverage genomic data produce reliable called geno-
types. This is, however, not always available, so Ohana also models genotype
likelihoods and provides support for low- or medium-coverage data.
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Figure 3.2: Bar charts provide a direct graphic representation of the admixture
results. Together with geographic records of the participating samples, map
diagrams provide a more informative view of the same results.

We apply a model-based inference approach. The structure analysis part
of the statistical model P1 (Q, F ) is similar to what is used in existing software
such as STRUCTURE [29], FRAPPE [35], ADMIXTURE [1], and SPA [36].
It denotes the probability of assigning admixture proportions Q to individuals
with corresponding allele frequencies F . We can work with not only high
quality genomic data in the form of genotype observations PO1 (Q, F ) but
also lower coverage data in the form of genotype likelihoods PL1 (Q, F ).
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Genotype observations

We formulate the analytical expression of the likelihood model as the following
when we apply genotype observations as the input. We count the occurrences
of major and minor alleles from a given dataset. We denote K as the num-
ber of populations, I as the number of individuals, and J as the number of
polymorphic sites.

ln
[
PO1 (Q, F )

]
=

I∑
i

J∑
j

{
gij · ln

[
K∑
k

qik · fkj

]
+ (2− gij) · ln

[
K∑
k

qik ·
(
1− fkj

)]}
.

Genotype likelihoods

We formulate the analytical expression of the likelihood model as the following
when we apply genotype likelihoods as the input. Values gAAij , gAaij , and gaaij
are the probabilities of observing the sequence data at the ith individual’s jth
marker, conditioned on genotype AA, Aa (or aA), and aa, respectively. Let
us define the probability of having a major allele, conditioned on Q and F , at
the ith individual’s jth marker to be Aij =

∑K
m qim · fmj and the probability

of having a minor allele, conditioned on Q and F , at this location to be
Bij =

∑K
m qim · (1− fmj).

PL1 (Q, F ) =
∑
g

[Pr (read data | g) · Pr (g | Q, F )]

Pr (read dataij | gij) =


gAAij for AA
gAaij for Aa
gaaij for aa

or aA

ln
[
PL1 (Q, F )

]
=

I∑
i

J∑
j

ln
(
gAAij ·A

2
ij + gaaij B

2
ij + gAaij · 2AijBij

)
.

Population covariance analysis

Population covariance analysis estimates variances and covariances among
population components. Given a covariance matrix, we can draw conclusions
about genetic distances among these components. The inputs of this process
are allele frequencies for each population component at each marker. If we
assume these components follow a tree-like evolution, we can approximate
the estimated covariance matrix into a tree structure, which provides a direct
representation, like shown in Figure 3.3.

We model the joint distribution of allele frequencies across all ancestry
components as a multivariate Gaussian similar to TreeMix [28]. P2 (F ) is the
probability of having such ancestral allele frequencies given the populations.
The variance of the multivariate normal distribution is a product of two factors
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Allele Frequencies · F

J: # of markers

K: # of
populations

K

K

Figure 3.3: One way to visualize the covariance estimates is to approximate
the covariance matrix into a phylogenetic tree structure. From the tree rep-
resentation we learn the genetic relationships among population components.

[28]. The first term µj (1− µj) is site-specific. The second term, Ω, is constant
across sites, and Ω captures population variances and covariances.

P (fj | Ω, µj) ∼ N (µj , µj (1− µj) Ω) .

The ovariance matrix Ω is symmetric and of size K ×K. fj is a vector of
size K containing the allele frequencies at site j. Here µj is the average allele
frequency at site j. It is calculated by dividing the occurrences of the allele
by the total alleles at site j, i.e. the sum of the major-major sites and half of
the major-minor sites divided by the total number of sites.

ln [P2 (F )] = ln

{
J∏
j

[
1√
|2πcjΩ|

exp
(
−

1
2

(fj − µj)T (cjΩ)−1 (fj − µj)
)]}

= −
1
2
·
J∑
j

{
K · ln (2πcj) + ln [det (Ω)] +

1
cj
· (fj − µj)T Ω−1 (fj − µj)

}
where cj = µj (1− µj) .

This system is under-determined. It happens because of the symmetry of
the Gaussian distribution. One unrooted tree corresponds to multiple different
covariance matrices, i.e. rooted trees. These covariance matrices all induce
the same probability distribution on the allele frequencies. To address this,
we root the tree in one of the observations. This corresponds to calculating
the conditional probability of the data given the value observed in one of the
populations, which can be arbitrarily chosen. We use the first population as
the “root population”. Allele frequencies at other loci are replaced by the
difference f ′j of the original values fj , and the corresponding frequency in the
first population fj0 . We obtain Ω′, a symmetric matrix of size (K − 1) ×
(K − 1).
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ln [P2 (F )] = ln

{
J∏
j

[
1√
|2πcjΩ′|

exp
(
−

1
2
· f ′Tj ·

(
cjΩ′

)−1
· f ′j
)]}

= −
1
2
·
J∑
j

{
(K − 1) · ln (2πcj) + ln

[
det
(
Ω′
)]

+
1
cj
· f ′Tj · Ω

′−1 · f ′j

}
where cj = µj (1− µj)

f ′j = fj − fj0 .

3.3 Parameter Inference

SQP for structure analysis

In general, we can approximate a function F with its second order Taylor
expansion FT . Each Newton update attempts to find the ∆x such that the
derivative of FT with respect to ∆x is zero.

FT (xn + ∆x) = F (xn) + F ′ (xn) ∆x+
1
2
F ′′ (xn) ∆x2

If we use quadratic programming to solve for each Newton’s update step,
this becomes a sequential quadratic programming (SQP) problem. The sec-
ond order Taylor expansion forms the quadratic form, 1

2 x̄
TQx̄ + cT x̄, where

c corresponds to [F ′ (xn)]T , Q corresponds to F ′′ (xn), and F (xn) is a con-
stant term that can be dropped. In each round of quadratic optimization, we
solve for ∆x that tells us the direction and amount to take for the next step.
This tends to an optima on the objective surface. When we have a bounded
problem, the overall problem is convex. In that case, the local optima we find
through SQP is also the global optima.

In our case, we need to satisfy a sequence of constraints while searching
for ∆x. Specifically, ∀∆qik, qik + ∆qik ∈ [0, 1], ∀∆fkj , fkj + ∆fkj ∈ [0, 1],
and ∀∆qik,

∑K
k ∆qik = 0 because

∑K
k qik = 1. We have an equality- and

inequality- constraint SQP problem.
In the implementation, we avoid dealing with individual values and iter-

ating through matrix elements in a sequential fashion. We accomplish matrix
operations at the highest level possible, i.e. vectors or matrices as a whole.

Derivatives for genotype observation model

We derive the first and second differentials for ln
[
PO1 (Q, F )

]
with respect to

values in Q.
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∂
(
ln
[
PO1 (Q, F )

])
∂qik

=
∂

(∑I

i

∑J

j

{
gij · ln

[∑K

k
qik · fkj

]
+ (2− gij) · ln

[∑K

k
qik ·

(
1− fkj

)]})
∂qik

=
J∑
j

[
gij · fkj∑K

m
qim · fmj

+
(2− gij) ·

(
1− fkj

)∑K

m
qim · (1− fmj)

]

∂2
(
ln
[
PO1 (Q, F )

])
∂qik∂qi′k′

=

−
∑J

j

{
gij ·fkj ·fk′j(∑K

m
qim·fmj

)2 +
(2−gij)·(1−fkj)·

(
1−fk′j

)[∑K

m
qim·(1−fmj)

]2 }
if i = i′

0 if i 6= i′.

We derive the first and second differentials for ln [P1 (Q, F )] with respect
to values in F .

∂
(
ln
[
PO1 (Q, F )

])
∂fkj

=
∂

(∑I

i

∑J

j

{
gij · ln

[∑K

k
qik · fkj

]
+ (2− gij) · ln

[∑K

k
qik ·

(
1− fkj

)]})
∂fkj

=
I∑
i

[
gij · qik∑K

m
qim · fmj

−
(2− gij) · qik∑K

m
qim · (1− fmj)

]

∂2
(
ln
[
PO1 (Q, F )

])
∂fkj∂fk′j′

=

−
∑J

j

{
gij ·qik·qik′(∑K

m
qim·fmj

)2 + (2−gij)·qik·qik′[∑K

m
qim·(1−fmj)

]2} if j = j′

0 if j 6= j′.

In the implementation, for each row of Qi, calculating the derivatives re-
quires the corresponding vector Gi, Ai, Bi, and all of Fa and Fb, where
A = Q · Fa and B = Q · Fb.

∂
(
ln
[
PO1 (Q, F )

])
∂Qi

=
J∑
j

[
Gij

Aij
· Faj +

(
2−Gij

)
Bij

· Fbj
]

∂
(
ln
[
PO1 (Q, F )

])
∂Qi∂Qi

= −
J∑
j

{
Gij(
Aij

)2 · [Faj (Faj)T ]+
2−Gij(
Bij

)2 · [Fbj (Fbj)T ]
}
.

For each column of F j , calculating its derivatives requires the correspond-
ing Gj , Aj , Bj , and all of Q.

∂
(
ln
[
PO1 (Q, F )

])
∂F j

=
I∑
i

[(
Gji

Aji

−
2−Gji
Bji

)
·Qi
]

∂
(
ln
[
PO1 (Q, F )

])
∂F j∂F j

= −
I∑
i

{[
Gji(
Aji

)2 +
2−Gji(
Bji

)2
]
·
[(
Qi
)T

Qi
]}

.

Derivatives for genotype likelihood model

We derive the first and second derivatives of ln
[
PL1 (Q, F )

]
with respect to

values in the Q matrix.
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∂
(
ln
[
PL1 (Q, F )

])
∂qik

=
∂

(∑I

i

∑J

j
ln
(
gAAij ·A

2
ij + gaaij ·B

2
ij + gAaij · 2AijBij

))
dqik

=
J∑
j

[
GQ (i, j, k)
F (i, j)

]
∂2
(
ln
[
PL1 (Q, F )

])
∂qik∂qi′k′

=

{∑J

j

[
F (i,j)·HQ(i,j,k,k′)−GQ(i,j,k)·GQ(i,j,k′)

F2(i,j)

]
if i = i′

0 if i 6= i′

F (i, j) = gAAij ·A
2
ij + gaaij ·B

2
ij + gAaij · 2AijBij

GQ (i, j, k) =
∂F (i, j)
∂qik

= 2gAAij · fkj ·Aij + 2gaaij ·
(
1− fkj

)
·Bij +

2gAaij ·
[
Aij ·

(
1− fkj

)
+Bij · fkj

]
HQ
(
i, j, k, k′

)
=

∂G (i, j, k)
∂qik′

= 2gAAij · fkj · fk′j + 2gaaij ·
(
1− fkj

)
·
(
1− fk′j

)
+

2gAaij
[
fk′j ·

(
1− fkj

)
+
(
1− fk′j

)
· fkj

]
.

We derive the first and second derivatives of ln
[
PL1 (Q, F )

]
with respect

to values in the F matrix.

∂
(
ln
[
PL1 (Q, F )

])
∂fkj

=
d

(∑I

i

∑J

j
ln
(
gAAij ·A

2 + gaaij ·B
2 + gAaij ·AB

))
dfkj

=
I∑
i

[
GF (i, j, k)
F (i, j)

]
∂2
(
ln
[
PL1 (Q, F )

])
dfkjdfk′j′

=

{∑I

i

[
F (i,j)·HF (i,j,k,k′)−GF (i,j,k)·GF (i,j,k′)

F2(i,j)

]
if j = j′

0 if j 6= j′

F (i, j) = gAAij ·A
2
ij + gaaij ·B

2
ij + gAaij · 2AijBij

GF (i, j, k) =
∂F (i, j)
∂fkj

= 2gAAij · qik ·Aij − 2gaaij · qik ·Bij +

2gAaij · (Bij · qik −Aij · qik)

HF
(
i, j, k, k′

)
=

∂G (i, j, k)
∂fk′j

= 2gAAij · qik · qik′ + 2gaaij · qik · qik′ − 4gAaij · qik · qik′ .

In the implementation, for each row of Qi, calculating the derivatives re-
quires the corresponding vector GAAi, GAai, Gaai, Ai, Bi, and all of Fa and
Fb.
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∂
(
ln
[
PL1 (Q, F )

])
∂Qi

=
J∑
j

(
βij · Fa

j + γijFb
j

αij

)
∂2
(
ln
[
PL1 (Q, F )

])
∂Qi∂Qi

=
J∑
j

2GAAij

[
Faj

(
Faj
)T ]

+ 2Gaaij

[
Fbj
(
Fbj
)T ]

αij


J∑
j

2GAaij

[
Faj

(
Fbj
)T ]

+ 2GAaij

[
Fbj
(
Faj
)T ]

αij


−

J∑
j


(
βij

)2 [
Faj

(
Faj
)T ]

+
(
γij

)2 [
Fbj
(
Fbj
)T ](

αij

)2


−
J∑
j

βijγ
i
j

[
Faj

(
Fbj
)T ]

+ βijγ
i
j

[
Fbj
(
Faj
)T ](

αij

)2


αij = GAAij

(
Aij
)2

+Gaaij

(
Bij
)2

+ 2GAaij ·AijB
i
j

βij = 2GAAij Aij + 2GAaij Bij

γij = 2Gaaij Bij + 2GAaij Aij .

For each column of F j , calculating its derivatives requires the correspond-
ing Gj , Aj , Bj , and all of Q.

∂
(
ln
[
PL1 (Q, F )

])
∂F j

=
I∑
i

(
ζij

αij
Qi

)
∂2
(
ln
[
PL1 (Q, F )

])
∂F j∂F j

=
I∑
i

{(
2GAAij + 2Gaaij − 4GAaij

)
αij

[(
Qi
)T

Qi
]}

−
I∑
i

{ (
ζij

)2(
αij

)2 [(Qi)T Qi]
}

αij = GAAij

(
Aij
)2

+Gaaij

(
Bij
)2

+ 2GAaij ·AijB
i
j

ζij = 2GAAij Aij − 2Gaaij Bij + 2GAaij Bij − 2GAaij Aij .

Block structure

The log likelihood function L (Q, F ) is concave in Q for a fixed F and concave
in F for a fixed Q. In each iteration of updating Q and F , we perform two
quadratic optimizations, one for Q and one for F .
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HQ =


∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗


DQ =

[
∗ ∗ ∗ ∗ ∗ ∗

]
HF =



∗ ∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0
0 0 ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ 0 0
0 0 0 0 ∗ ∗ 0 0
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗


DF =

[
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

]
For example, if we have I = 3, J = 4, and K = 2, for updating Q, we have

a Hessian matrix HQ of size 6 × 6 and a derivative vector DQ of size 6; for
updating F , we have a Hessian matrix HF of size 8×8 and a derivative vector
DF of size 8. Based on quadratic calculations, they would take the form of
the above matrices where asterisks represent non-zero entries.

In theory, with this information we can perform quadratic optimization to
find the ∆Q and ∆F . In practice, however, we have very large I and even
larger J . We would have very large and sparse HQ and HF . We avoid solving
and storing matrix inversions by solving the system of linear equations. To
solve the system of linear equations, we first observe the Hessian matrices. It
is clear that rather than solving the full linear system, the problem can be
split into a collection of smaller problems consisting of solving systems with
Hessian matrices of K ×K instead of IK × IK and JK × JK.

HQi
=
[
∗ ∗
∗ ∗

]
HFj

=
[
∗ ∗
∗ ∗

] DQi
=
[
∗ ∗

]
DFj

=
[
∗ ∗

] ∀i ∈ {0, 1, , · · · , I − 1}

∀j ∈ {0, 1, , · · · , J − 1}

Active set algorithm

To solve these inequality- and equality-constraint quadratic optimization prob-
lems, we can apply the Active Set Algorithm [24]. A constraint is called active
when its equality is satisfied and inactive when its strict inequality is satisfied
[27]. An equality constraint is always active. A rough outline of this algorithm
is described below.

To find a feasible starting point and initialize the corresponding active set,
we could use linear programming. With our problem, however, we can take a
shortcut. We have box constraints, i.e. ai ≤ ∆i ≤ bi, where ai < 0 and bi > 0,
∀i. We can always provide [a0, 0, · · · , 0] as the starting point and initialize
the active set to contain one constraint, ∆0 ≤ −a0.

To solve the equality problem defined by the active set and compute the La-
grange multipliers of the active set, we use the Karush-Kuhn-Tucker (KKT)
approach [16, 18]. It is a nonlinear programming generalization of the La-
grange multiplier method. It allows only equality constraints. The active set
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Algorithm 2 Quadratic programming with the active set algorithm
Find a feasible starting point
Initialize the corresponding active set
loop
Solve the equality problem defined by the active set
Compute the Lagrange multipliers of the active set
if the solved approximation is within the feasible region then
if all Lagrange multipliers are negative then
return the solved approximation

else
Remove the constraint with the largest Lagrange multiplier

end if
else
Take the shortest step back into the feasible region
Insert the corresponding constraint into the active set

end if
end loop

algorithm operates based on solving for equality quadratic subproblems. The
general form of the KKT procedure can be summarized in the following equa-
tion, where H is the Hessian, A is the coefficients of constraints defined in the
active set, x is the solution vector to be tested, L is the Lagrange multipliers,
D is the derivatives, and b is the right hand side of the active constraints.

max∆

{1
2
xTHx+Dx

}
s.t. Ax = b

solve
[
H AT

A 0

]
·
[
x
L

]
=
[
−D
b

]
.

In each iteration of the main loop, the active set algorithm tries to find
a better solution by walking along the active constraints. It deviates from
the bounds when the Lagrange multipliers signal a better solution toward
the feasible region. The maximum iterations of the main loop is the num-
ber of inequality constraints. In the worst case, the algorithm walks along
each inequality constraint once. We have 2K + 1 constraints for updat-
ing Qi and 2K constraints for updating Fj . Without block relaxation, we
have 2IK + I constraints for updating Q and 2JK constraints for updat-
ing F . The runtime complexity for each update step, therefore, improves
from Θ

(
I2K2 · (I + 2IK) + J2K2 · 2JK

)
to Θ

(
IK2 · (1 + 2K) + JK2 · 2K

)
taking advantage of the block structure.

To update Qi, we maximize a quadratic form subject to one equality con-
straint and 2K inequality constraints.
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max∆Qi

{1
2

∆T
Qi
HQi

∆Qi
+DTQi

∆Qi

}
s.t. A∆Qi

≤ a
B∆Qi

= b

where A =



−1 · · · 0
...

...
...

0 · · · −1
1 · · · 0
...

...
...

0 · · · 1

 a =



qi0
...
qik

1− qi0
...

1− qik


B =

[
1 · · · 1

]
b = [0]

To update Fj , we maximize a quadratic form subject to just 2K inequality
constraints.

max∆Fj

{1
2

∆T
Fj
HFj

∆Fj
+DTFj

∆Fj

}
s.t. A∆Fj

≤ a

where A =



−1 · · · 0
...

...
...

0 · · · −1
1 · · · 0
...

...
...

0 · · · 1

 a =



f0j
...
fkj

1− f0j
...

1− fkj



A concrete example Here we present a concrete example of the active set
algorithm applied to solve a plain quadratic minimization problem. We define
the quadratic form following the convention of the active set algorithm, i.e. a
minimization problem with less-than inequality constraints.

min
x

{
x2 + y2 − 8x− 6y

}
s.t. −x ≤ 0

−y ≤ 0
x+ y ≤ 5

We can easily derive the Hessian matrix and the derivative vector. We can
then compute the D vector and express this problem in its quadratic form,
min
x̄

{
1
2 x̄

THx̄+Dx̄
}
.
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∂
(
x2 + y2 − 8x− 6y

)
∂x

= 2x− 8

∂
(
x2 + y2 − 8x− 6y

)
∂y

= 2y − 6

∂2
(
x2 + y2 − 8x− 6y

)
∂x∂x

= 2

∂2
(
x2 + y2 − 8x− 6y

)
∂y∂y

= 2

∂2
(
x2 + y2 − 8x− 6y

)
∂x∂y

=
∂2
(
x2 + y2 − 8x− 6y

)
∂y∂x

= 0

⇒ H =
[

2 0
0 2

]
D =

[
2x− 8
2y − 6

]
−H

[
x
y

]
=
[
−8
−6

]
We can apply a linear programming step to find a good initial starting

point, but since the problem is simple, we can just use the origin as the starting
point. This would render the first two constraints active, so our initial active
set contains the first two constraints.

min
x̄

{1
2
x̄T
[

2 0
0 2

]
x̄+
[
−8
−6

]
x̄

}
s.t.

[
−1 0
0 −1

]
x̄ =

[
0
0

]
solve

 2 0 −1 0
0 2 0 −1
−1 0 0 0
0 −1 0 0

 ·
 x

y
L1
L2

 =

 8
6
0
0


⇒

 x
y
L1
L2

 =

 0
0
−8
−6

 .
The first round of solving KKT does not move anywhere. This is, of course,

the case because the intersect of the first two constraints is unique, the origin.
But we receive negative Lagrangian which indicate better solutions towards
the feasible region. Following the algorithm we remove the constraints with
the smallest Lagrangian.

solve

[
2 0 0
0 2 −1
0 −1 0

]
·

[
x
y
L1

]
=

[
8
6
0

]

⇒

[
x
y
L1

]
=

[
4
0
−6

]
.

The second round of solving KKT takes us from (0, 0) to (4, 0). We still
have a negative Lagrangian, so we remove the only constraint currently active.
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solve
[

2 0
0 2

]
·
[
x
y

]
=
[

8
6

]
⇒
[
x
y

]
=
[

4
3

]
.

The third round of solving KKT takes us from (4, 0) to (4, 3), which is
outside of the feasible region because 4 + 3 > 5. Following the algorithm, we
backtrack towards the previous valid point, (4, 0), and add the constraint that
is crossed during this backtrack.

solve

[
2 0 1
0 2 1
1 1 0

]
·

[
x
y
L1

]
=

[
8
6
5

]

⇒

[
x
y
L1

]
=

[
3
2
2

]
.

The forth round of solving KKT takes us from (4, 3) to (3, 2), and the only
Lagrangian is now positive. We therefore return (3, 2) as the final solution.

Complementarity pivoting algorithm

To solve these inequality- and equality-constraint quadratic optimization prob-
lems, we can also use an adaptation of the complementarity pivoting algorithm
designed for linear complementarity problems [24]. The complementarity piv-
oting algorithm is similar to the simplex algorithm used for linearly program-
ming problems. The first goal is to convert our problem to a quadratic opti-
mization problem in the following form.

min
x

{1
2
xTQx+ CT x

}
s.t. Ax ≥ b

x ≥ 0

Then we can map it to a linear complementarity problem w = M · z + q
where wi · zi = 0, ∀i, and we can implement Lemke’s complementarity pivot
algorithm to solve for z and hence for x.

M =
[
Q −AT
A 0

]
q =

[
c
−b

]
z =

[
x
λ

]
In our problem, we use the SQP approach by first approximating the

objective functions, both the genotype observation version and the genotype
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likelihood version, with their second order Taylor expansions. The quantity we
optimize is ∆xQ or ∆xF for updating Q or F , respectively. These quantities
record the changes in values for Q or F , so they need to satisfy a sequence of
constraints during the search for ∆x, ∀∆qik, qik + ∆qik ∈ [0, 1], ∀∆fkj , fkj +
∆fkj ∈ [0, 1], and ∀∆qik,

∑K
k ∆qik = 0 because

∑K
k qik = 1.

As we can see, the conditions do not quite satisfy the requirements from
Lemke’s algorithm. Specifically, we have equality constraints for updating Q,
and the values to solve can be negative. For equality constraints, we replace
them with pairs of inequality constraints. For negativity, we perform a re-
parameterizing based on the knowledge of our bounded parameter space. We
let ∆̄q = ∆q + v and ∆̄f = ∆f + v for all values in Q and F . We proceed to
solve for ∆̄q and ∆̄f , and we then recover the original values with ∆q = ∆̄q−v
and ∆f = ∆̄f − v.

FT
(
xn + ∆̄x− v

)
= F (xn) + F ′ (xn)

(
∆̄x− v

)
+

1
2
(
∆̄x− v

)T
F ′′ (xn)

(
∆̄x− v

)
= F (xn)− v · F ′ (xn) + F ′ (xn) ∆̄x+

1
2

[(
∆̄x
)T

F ′′ (xn) ∆̄x− v
(
∆̄x
)T

F ′′ (xn)− vF ′′ (xn) ∆̄x+ v2F ′′ (xn)
]

= F (xn)− v · F ′ (xn) +
1
2
v2F ′′ (xn) +[

F ′ (xn)− vF ′′ (xn)
]

∆̄x+
1
2
(
∆̄x
)T

F ′′ (xn) ∆̄x

⇒ Q∆̄x = Q∆x

C∆̄x = C∆x − v ·Q∆x

If we select a v ≥ 1, we would satisfy ∆̄x ≥ 0 as required by the basic
form for Lemke’s algorithm. And we would insert equality constraints as
two inequality constraints. Finally, we have a maximization problem rather
than minimization. It clear that if we phrase our problem as the following,
we simply need to negative all quantities, Q, C, A, and b, before Lemke’s
operations.

max
x

{1
2
xTQx+ CT x

}
s.t. Ax ≤ b

x ≤ 0

To update Qi, we maximize a quadratic form subject to 1 equality con-
straint and 2K inequality constraints.
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max∆Q̄i

{1
2

∆T
Q̄i
HQ̄i

∆Q̄i
+DT

Q̄i
∆Q̄i

}
s.t. A∆Q̄i

≤ a
B∆Q̄i

= b

where A′ =



−1 · · · 0
...

...
...

0 · · · −1
1 · · · 0
...

...
...

0 · · · 1
1 · · · 1
−1 · · · −1


a′ =



qi0 − v
...

qik − v
1 + v − qi0

...
1 + v − qik

k · v
−k · v


To update Fj , we maximize a quadratic form subject to just 2K inequality

constraints.

max∆F̄j

{1
2

∆T
F̄j
HF̄j

∆F̄j
+DT

F̄j
∆F̄j

}
s.t. A∆F̄j

≤ a

where A =



−1 · · · 0
...

...
...

0 · · · −1
1 · · · 0
...

...
...

0 · · · 1

 a =



f0j − v
...

fkj − v
1 + v − f0j

...
1 + v − fkj


A concrete example Here we present a concrete example of the comple-
mentarity pivoting algorithm used to solve a plain quadratic minimization
problem. We define the quadratic form following the convention of Lemke’s al-
gorithm, i.e. a minimization problem with greater-than inequality constraints.

min
x

{
x2 + y2 − 8x− 6y

}
s.t. x ≥ 0

y ≥ 0
−x− y ≥ −5

Like in the example for the active set algorithm, we first derive the Hessian
matrix and the derivative vector. We then compute the C vector and express
this problem in its linear complementarity form.

min
x̄

{1
2
x̄THx̄+Dx̄

}
H =

[
2 0
0 2

]
, C =

[
−8
−6

]

⇒ M =


2 0 1 0 −1
0 2 0 1 −1
1 0 0 0 0
0 1 0 0 0
−1 −1 0 0 0

 , q =


−8
−6
0
0
5


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We pad the column of z0 with values −1 and initiate the pivoting at
column z0. We first select location (w1, z0) as the pivot because −8 is the
most negative q. We perform Gaussian-Jordan elimination on pivot (w1, z0)
to obtain the second tabula. We dropped w1 from the base vector (BV), so
we pivot on column z1. Because 1 is the smallest ratio we pivot on (w2, z1).
We continue this process until the present basis is a complementary feasible
basis, and then the algorithm terminates.

BV w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 z0 q
w1 1.000 0.000 0.000 0.000 0.000 -2.000 -0.000 1.000 0.000 -1.000 -1.000 -8.000
w2 0.000 1.000 0.000 0.000 0.000 -0.000 -2.000 0.000 1.000 -1.000 -1.000 -6.000
w3 0.000 0.000 1.000 0.000 0.000 -1.000 -0.000 -0.000 -0.000 -0.000 -1.000 -0.000
w4 0.000 0.000 0.000 1.000 0.000 -0.000 -1.000 -0.000 -0.000 -0.000 -1.000 -0.000
w5 0.000 0.000 0.000 0.000 1.000 1.000 1.000 -0.000 -0.000 -0.000 -1.000 5.000

BV w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 z0 q
z0 -1.000 -0.000 -0.000 -0.000 -0.000 2.000 0.000 -1.000 -0.000 1.000 1.000 8.000
w2 -1.000 1.000 0.000 0.000 0.000 2.000 -2.000 -1.000 1.000 0.000 0.000 2.000
w3 -1.000 0.000 1.000 0.000 0.000 1.000 0.000 -1.000 -0.000 1.000 0.000 8.000
w4 -1.000 0.000 0.000 1.000 0.000 2.000 -1.000 -1.000 -0.000 1.000 0.000 8.000
w5 -1.000 0.000 0.000 0.000 1.000 3.000 1.000 -1.000 -0.000 1.000 0.000 13.000

BV w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 z0 q
z0 0.000 -1.000 -0.000 -0.000 -0.000 0.000 2.000 0.000 -1.000 1.000 1.000 6.000
z1 -0.500 0.500 0.000 0.000 0.000 1.000 -1.000 -0.500 0.500 0.000 0.000 1.000
w3 -0.500 -0.500 1.000 0.000 0.000 0.000 1.000 -0.500 -0.500 1.000 0.000 7.000
w4 0.000 -1.000 0.000 1.000 0.000 0.000 1.000 0.000 -1.000 1.000 0.000 6.000
w5 0.500 -1.500 0.000 0.000 1.000 0.000 4.000 0.500 -1.500 1.000 0.000 10.000

BV w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 z0 q
z0 -0.250 -0.250 -0.000 -0.000 -0.500 0.000 0.000 -0.250 -0.250 0.500 1.000 1.000
z1 -0.375 0.125 0.000 0.000 0.250 1.000 0.000 -0.375 0.125 0.250 0.000 3.500
w3 -0.625 -0.125 1.000 0.000 -0.250 0.000 0.000 -0.625 -0.125 0.750 0.000 4.500
w4 -0.125 -0.625 0.000 1.000 -0.250 0.000 0.000 -0.125 -0.625 0.750 0.000 3.500
z2 0.125 -0.375 0.000 0.000 0.250 0.000 1.000 0.125 -0.375 0.250 0.000 2.500

BV w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 z0 q
z5 -0.500 -0.500 -0.000 -0.000 -1.000 0.000 0.000 -0.500 -0.500 1.000 2.000 2.000
z1 -0.250 0.250 0.000 0.000 0.500 1.000 0.000 -0.250 0.250 0.000 -0.500 3.000
w3 -0.250 0.250 1.000 0.000 0.500 0.000 0.000 -0.250 0.250 0.000 -1.500 3.000
w4 0.250 -0.250 0.000 1.000 0.500 0.000 0.000 0.250 -0.250 0.000 -1.500 2.000
z2 0.250 -0.250 0.000 0.000 0.500 0.000 1.000 0.250 -0.250 0.000 -0.500 2.000

We then read the solution from the last tabular, z1 = x = 3 and z2 = y = 2.
The rest of the z values are Lagrangian. If the process terminates due to a
pivoting column with entirely non-positive values, then the pivoting algorithm
fails to find the optima. This does not happen in our case, however, because
our problem is well-shaped, while the complementarity pivoting algorithm at-
tempts to solve linear complementarity problems in their general form, where
M is not restricted to symmetric and positive semi-definite matrices.

Comparison between the Active set algorithm and the
Complementarity pivoting algorithm

Ohana’s qpas program implements the active set algorithm, and Ohana’s
cpax program implements the complementarity pivoting algorithm. We tailor
both methods to solve the SQP problem defined by the classical structure
model. Both methods take advantage of the block structure of Hessians, where
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K cpax lle qpas lle diff (cpax-qpas)
2 -1967734 -1967733 -1
3 -1956799 -1956785 -14
4 -1946379 -1946218 -161
5 -1935939 -1935775 -164
6 -1925641 -1925636 -5
7 -1915558 -1915552 -6
8 -1905394 -1905430 36
9 -1895298 -1895372 74
10 -1885465 -1885306 -160
11 -1875303 -1875503 200
12 -1865490 -1865492 2
13 -1855715 -1855502 -213
14 -1846133 -1845732 -401
15 -1836169 -1836315 147

Table 3.1: Highest log likelihoods achieved from Ohana’s cpax and qpas
programs over a range of K values. For each program, and each K, we execute
100 times using random seeds 0, 1, ..., 99. Two thirds of the time, Ohana’s qpas
reports higher likelihoods. This dataset contains 118 Europeans of 17,507.

most of the off-diagonal values diminish, so both methods deal with sequences
of small matrix operations rather than large matrix operations. Both methods
perform calculations at the highest possible level, vector or matrix, rather than
iterating each matrix element sequentially.

At this stage of Ohana’s development, we recognize qpas as the better
solver over capx. From our benchmark tests, qpas generally reached better
likelihood values. Table 3.1 shows such an experiment. The time durations
required for both programs to reach their plateau likelihoods are similar.

NM for population covariances

After obtaining population stratification from the structure model, the natu-
ral next question to ask is regarding the evolution history of these ancestry
components. We achieve this goal by modeling the allele frequencies produced
from the structure analysis using Gaussian approximation. Gaussian model-
ing corresponds to a Brownian motion approximation of genetic drift rather
than, say, Wright-Fisher diffusion. We show in the simulations that Gaussian
modeling is reasonably robust, but it underestimates branch lengths for long
divergence scenarios. This limitation exits in all methods and tools that apply
Gaussian approximation, such as TreeMix [28].

Eq 3.1 captures this likelihood model. We can evaluate a given valid
covariance matrix into a likelihood value. We can, therefore, treat this as a
black-box optimization problem and consider gradient-less optimization meth-
ods. In this category, we implemented and experimented with two. The first
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is Particle Swarm Optimization (PSO). The second is Nelder-Mead (NM) op-
timization [25]. Between these two, we prefer the deterministic NM over the
heuristic based PSO. NM has behaved well in simulations.

We use sample covariances as the initial starting point for the Nelder-
Mead optimizer. The general form for computing sample covariances for a
multivariate distribution is Sc = 1

n ·
∑n
i (xi − x̄i) (xi − x̄i)T . We do not have

a single mean value per population. Each site has its own mean value, and
this value is the same across populations at that site.

Sc =
1
J
·
J∑
j

(xj − x̄j) (xj − x̄j)T

xj =

 f0
...

fK−1


j

x̄j =

 fA
...
fA


j

xj − x̄j =

 f ′0
...

f ′K−1


j

.

3.4 Phylogenetic trees estimation
Ohana not only produces the covariance relationships among ancestry compo-
nents, but it also estimates the most compatible phylogenetic tree structure
to depict the evolutionary history. Covariance matrices and their most com-
patible trees have a one-to-one mapping. Of course, the evolutionary history
of the ancestry components may not be a tree-like demography. In this case,
we show in the simulations that the tree inference process produces the closest
approximation.

To construct phylogenetic trees, we first transform covariance matrices
to distance matrices. The distance between two populations is the sum of
the variances of these two populations, less two multiplied by the covariance
between them. We then use the neighbor-joining method to construct phylo-
genetic trees from distance matrices. Finally, we visualize phylogenetic trees
in scalable graphics. This pipeline is illustrated below.

3.5 Selection study
Following the structure analysis and population tree inference, a natural ex-
tension of this framework is to detect SNPs that, according to the likelihood
models, prefer to deviate from the globally estimated covariance structure.
In other words, we detect SNPs that exhibit different speeds of genetic drift.
This process is not a fixed procedure. Instead, each execution should follow a
certain hypothesis and focus the selection strength to signals that reflect fea-
tures such as local adaptation, population bottleneck, ancient versus modern
data, etc.

Specifically, we scan for covariance outliers by applying a likelihood model
to each locus, similar to the one used genome-wide but with certain scalar
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3 3
0.33 0.22 0.16
0.22 0.56 0.15
0.16 0.15 0.24

Step #1: the rooted
covariance matrix
estimated for 4 populations

4 4
0.00 0.00 0.00 0.00
0.00 0.33 0.22 0.16
0.00 0.22 0.56 0.15
0.00 0.16 0.15 0.24

Step #2: the full
covariance matrix
estimated for 4 populations

4
A 0.00 0.33 0.56 0.24
B 0.33 0.00 0.45 0.25
C 0.56 0.45 0.00 0.50
D 0.24 0.25 0.50 0.00

Step #3 the distance matrix in
PHYLIP format, calculated
from the full covariance matrix

(A:0.157667,(C:0.345000,B:0.105000):0.065000,D:0.082333);

Step #4: the phylogenetic tree constructed from the distance matrix

Step #5: visualization of the phylogenetic tree

convert cov2nwk

convert nwk2svg
or the following service for even beer quality graphics
http://www.jade-cheng.com/trees/

A

C

BD

Figure 3.4: Pipline for phylogenetic tree construction. We start with the
estimated variances and covariances. We compute the distance matrix and
approximate the distance matrix into a tree structure. Finally, we visualize
the tree using scalar graphics.

factor variations. This creates a nested likelihood model. Through a likeli-
hood ratio test, it identifies loci in which the variance among populations is
larger than expected from the genome-wide estimated covariance matrix. This
method is inspired by a number of similar, recently-developed methods that
use a Gaussian distribution as an approximation to model the distribution of
allele frequencies among populations [4, 28].

To work with local adaptation hypotheses, we construct nested likelihood
models with the scalar multiplier applied to only portions of the covariance
structure rather than the entire covariance matrix.

We supply the selection algorithm with two covariance structures, one that
is globally estimated and another that reflects the research hypothesis. The
scanning process linearly interpolates between these two covariance structures
and records the best intermediate state that produces the optimal local like-
lihood value for each marker location. Figure 3.5 demonstrates two examples
where the selection analysis is localized at different portions of the covariance
structure.

To summarize, we establish a framework that starts with population ad-
mixture analysis through unsupervised learning, estimates global covariance
relations among ancestry components, and performs selection scanning with



3.5. SELECTION STUDY 57

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

Figure 3.5: Selection analysis localized at different branches of the covariance
tree. Top: selection analysis localized at the branch leading to component B.
Bottom: selection analysis localized at the branch leading to component C
and D. The left most covariance tree captures the global estimated covariance
structure. The right most covariance trees capture two different local evolution
hypotheses.

the capability of incorporating any given local evolutionary hypotheses. Al-
gorithm 3.5 presents the high-level pseudo-code for this test in the case where
we vary the covariance matrix by multiplying to it a scalar factor, α× Ω′.

Algorithm 3 Selection scan to test for covariance outliers
Obtain the full genotype dataset G with N markers and M samples
Sample N ′ markers with respect to LD to form G′

Perform admixture analysis on G′ of size M by N ′
Produce admixture proportions Q′ of size M by K
Produce allele frequencies F ′ of size K by N ′
QPAS over ln (P1) using G while fixing Q′
to produce F of size K by N
for each marker in F do
lratio ← 0
for each α in a range of equal intervals starting from 1 do
lnew ← ln (P2) calculated using α× Ω′
lold ← ln (P2) calculated using Ω′
if 2× (lnew − lold) > lratio then
lratio ← 2× (lnew − lold)

end if
end for
emit lratio

end for
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3.6 Joint inference for structure and covariances

The principle of joint estimation can be expanded to perform structure anal-
ysis with additional information or restraints. Ohana’s sequential quadratic
programming framework allows additional likelihood modules to be inferred
jointly as long as the appendices are second-order differentiable and hold the
same block structure, where most of the off-diagonal values in the Hessian
diminish. Although this module is not currently released with Ohana, the
idea of structure analysis with additional constraints is important and worth
further exploration.

Here we show the mathematics for weighing the structure analysis using
the inferred covariances. Over an iterative process, two parties of quantities
should produce the best joint likelihood values.

Algorithm 4 Selection scan to test for covariance outliers
Estimate Q and F without weights from Ω
Estimate Ω using Q and F weighted by Ω
repeat
Estimate Q′ and F ′ weighted by Ω starting from Q and F
Q← Q′ and F ← F ′

Estimate Ω′ using Q and F starting from Ω weighted by Ω
Ω← Ω′

until the joint likelihood value plateaus

In the joint inference process, we first estimate the initial pair of the Q
and F starting with a random Q and F . We then start Nelder-Mead with the
sample covariance matrix to estimate the initial Ω′. Then we estimate Q and
F weighted by Ω′. The updated Q and F are in turn used to update Ω′. This
process repeats until the joint likelihood value stops improving.

We derive the first differentials of ln [P2 (F )]. Note we have (α ·A)−1 =
1
α · A

−1, det (α ·A) = ar · det (A), and A = AT ⇒ A−1 =
(
A−1)T , where A is

a square matrix of r × r and α is a scalar.

∂ (ln [P2 (F )])
∂fkj

=
∂

(
− 1

2 ·
∑J

j

{
(K − 1) · ln (2πcj) + ln [det (Ω′)] + 1

cj
· f ′j

T · Ω′−1 · f ′j
})

∂fkj

=
∂

(
− 1

2cj
·
∑J

j

(
f ′j
T · Ω′−1 · f ′j

))
∂fkj

= −
1

2cj
·
∂
(∑K−1

n

∑K−1
m

(
f ′mj · Ω

′−1
mn · f ′nj

))
∂fkj

= −
1

2cj
·
∂
(∑K−1

n

∑K−1
m

[(
f(m+1)j − f0j

)
· Ω′−1

mn ·
(
f(n+1)j − f0j

)])
∂fkj



3.6. JOINT INFERENCE FOR STRUCTURE AND COVARIANCES 59

when k 6= 0 : = −
1

2cj
·
K−1∑
n

[
2 · Ω′−1

(k−1)n ·
(
f(n+1)j − f0j

)]
= −

1
cj
·
K−1∑
n

[
Ω′−1

(k−1)n ·
(
f(n+1)j − f0j

)]
= −

1
cj
·
K−1∑
n

(
Ω′−1

(k−1)n · f
′
nj

)
when k = 0 : = −

1
2cj
·
K−1∑
n

K−1∑
m

[
−Ω′−1

mn ·
(
f(n+1)j − f0j + f(m+1)j − f0j

)]
=

1
2cj
·
K−1∑
n

K−1∑
m

[
Ω′−1
mn ·

(
f(n+1)j + f(m+1)j − 2f0j

)]
=

1
2cj
·
K−1∑
n

K−1∑
m

[
Ω′−1
mn ·

(
f ′mj + f ′nj

)]
where cj = µj (1− µj)

We derive the second differentials of ln [P2 (F )].

∂2 (ln [P2 (F )])
∂fkj∂fk′j′

=
∂2
(
− 1

2 ·
∑J

j

{
(K − 1) · ln (2πcj) + ln [det (Ω′)] + 1

cj
· f ′j

T · Ω′−1 · f ′j
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where cj = µj (1− µj) .
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With the full likelihood function to update Q and F , we use the sum of the
two parts. Since the second part of the likelihood function does not concern
Q, the functional forms for Q’s derivatives stay the same.

∂ (ln [P1 (Q, F )] + ln [P2 (F )])
∂qik

=
∂ (ln [P1 (Q, F )])

∂qik

∂2 (ln [P1 (Q, F )] + ln [P2 (F )])
∂qik∂qi′k′

=
∂2 (ln [P1 (Q, F )])

∂qik∂qi′k′

∂ (ln [P1 (Q, F )] + ln [P2 (F )])
∂fkj

=
∂ (ln [P1 (Q, F )])

∂fkj
+
∂ (ln [P2 (F )])

∂fkj

∂2 (ln [P1 (Q, F )] + ln [P2 (F )])
∂fkj∂fk′j′

=
∂2 (ln [P1 (Q, F )])

∂fkj∂fk′j′
+
∂2 (ln [P2 (F )])
∂fkj∂fk′j′

.

3.7 Simulation studies

Data simulation

To evaluate the inference framework implemented in Ohana, we perform sim-
ulation studies. We apply two simulations schema, either simulating allele
frequencies directly or simulating populations of nucleotide sequences accord-
ing to a given demographic scenario. In both schema, we simulate admixture
proportions directly, and we form genotype observations by calculating the
probability of observing certain genotypes given the allele frequencies and the
admixture proportions.

Simulate F directly

To directly simulate allele frequencies, we sample from given distributions with
respect to a demography. We use Figure 3.6 as an example. A is the ancestral
population. B and C are two intermediate ancestral populations. Populations
1, 2, 3, and 4 are the populations to be inferred using K = 4.

The allele frequency matrix F has size K × J , where K is the number
of populations and J is the number of SNPs. We can simulate a SNP by
sampling fA from a beta distribution. We can then sample fB and fC from
a normal distribution with a mean of fA. We can further sample f1 and f2
from a normal distribution with a mean of fB, and we can sample f3 and f4
from a normal distribution with a mean of fC . We set the allele frequency to
the simulated value, clamped between zero and one.

fA ∼ B (5, 5)

fB , fC ∼ N
(
fA, fA · (1− fA) · σ2

)
f1, f2 ∼ N

(
fB , fB · (1− fB) · σ2

)
f3, f4 ∼ N

(
fC , fC · (1− fC) · σ2

)
.
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Figure 3.6: Example direct allele frequency simulation. Left: population co-
variances to be simulated. Right: covariance matrix reflecting the tree struc-
ture on the left.
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Figure 3.7: Example direct allele frequency simulation, rooted at population
#1. Left: population covariances to be simulated. Right: covariance matrix
reflecting the tree structure on the left.

Simulate F from sequences simulated from a demographic

In this schema, we perform coalescence simulation to obtain sequences under a
given demography. From samples produced for each population, we calculate
this population’s allele frequency for each marker. We apply filtration to the
simulated sequences as we do for genomic data collected from biological sam-
ples. We keep polymorphic sites with biallelic genotypes. We remove sites for
which minor allele frequencies are less than 5% for any of the populations. We
use the software fastsimcoal2 for sequential Markov coalescent simulation
of genomic data.

Simulate Q directly

We simulated admixture proportions directly. The admixture proportion ma-
trix Q has size I ×K where I is the number of individuals. We simulate for
both un-admixed and admixed scenarios. For the un-admixed case, we simply
assign portions of the samples to different populations. For the admixed case,
we simulate Qi independently from various symmetric Dirichlet distributions,
Dir (α, α, α) [1, 29]. The parameter α reflects the degree of admixture. When
α < 1, most individuals show little admixture, and when α > 1, the opposite
occurs.
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Simulate genotype observations

We sample genotype for each individual at each marker using the simulated
F and Q. The genotype matrix G has size I × J . For each SNP location,
the probabilities p0, p1, and p2 for getting 0, 1, and 2 are calculated using
the Q and F matrices described above. We first calculate the major allele
frequency fij for each individual at each SNP location. We then calculate the
probability of getting each genotype under Hardy-Weinberg Equilibrium.

fij =
K∑
k

Qik · Fkj

p0
ij = f2

ij

p1
ij = 2 · fij · (1− fij)

p2
ij = (1− fij)2 .

Effect of different divergence times

We designed a simulation study to investigate the effect of different divergence
times. In the simulation study shown in Figure 3.8, we have three divergence
scenarios: short, medium, and long. For each scenario, we simulated 120 in-
dividuals belonging to four groups, each with 30 individuals. The first three
groups were un-admixed. The fourth group was a mixture of the first three
under Dir (1.0, 1.0, 1.0). We simulated allele frequencies directly from distri-
butions. We simulated 10,000 markers for each scenario. We simulated allele
frequencies based on the covariance trees shown on the left in Figure 3.8. We
estimated covariance trees for each scenario, shown on the right.

In the short divergence scenario, the simulation poorly recovered the ad-
mixture proportions and covariance tree. A small difference in allele frequen-
cies across populations hinders the accurate estimation of allele frequencies
and leads to a poor estimation for the covariance tree. In the joint inference
process, a small difference would also cause a poor estimation of the admix-
ture. This is a limitation for any inference system using similar statistical
models such as STRUCTURE [29], FRAPPE [35], ADMIXTURE [1], and
SPA [36].

In the long divergence scenario, the simulation poorly estimated the co-
variance tree but nicely recovered the admixture proportions. Because of the
assumption in the Gaussian approximation, allele frequencies are bounded by
zero and one, and the accuracy of modeling allele frequencies as a multivariate
Gaussian decreases as the variances increase since more values land outside
of the bounds. This is a limitation for any inference system using similar
statistical models such as TreeMix [28].

In the medium-length divergence scenario, for suitable demographics, the
simulation nicely recovered both the admixture proportions and the covariance
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trees. The inferred covariance trees showed an accurate estimation of the
relative positions of populations.

Effect of unknown number of components

To mimic real data analysis where the number of ancestry components is
unknown, we designed two simulation studies, un-admixed and admixed.

In the simulation study shown in Figure 3.9, we simulated 120 individuals,
un-admixed, in 6 populations, 20 individuals per populations. We simulated
sequences of size 2,000,000 bp from which 12,961 markers survived the filtra-
tion. Simulation parameters are described in the figure. We then estimated
using a range of K values.

In the simulation study shown in Figure 3.10, we simulated 140 individu-
als, un-admixed, in 7 groups, 20 individuals per group. The first six groups
were un-admixed. The last group was a mixture of the first three. We sim-
ulated sequences of size 20,000,000 bp from which 125,787 markers survived
the filtration. Simulation parameters are as described in the figure.

For simulations shown in Figure 3.9 and 3.10, we observe the progress of
inferences when the number of assigned ancestry components increases. This
mimics the process of real data analysis in which we apply a range of K
values and evaluate the admixture and tree results without knowing the best
component assignment. Both the un-admixed case shown in Figure 3.9 and
the admixed case shown in Figure 3.10 demonstrate an ideal progression of the
estimated quantities. Both the admixture and tree results fit with simulation.
When the K value becomes too large (K = 7 in these simulations), we observe
over-fitting where arbitrary individuals are assigned to the new component,
which in turn forms a new branch on the phylogenetic tree that deviates from
the simulated tree. The rest of the admixture and tree results still map to
simulation properly.

Effect of joint inference

In the joint inference process, we attempt to find the best overall likelihood
value P1 + P2. We first estimate the initial pair of Q and F , starting with
random values. We then perform Nelder-Mead with the sample covariance
matrix to estimate the initial rooted covariance matrix Ω′. After that we
estimate Q and F , weighted by this matrix, and the updated Q and F are
used in the next iteration to update Ω′.

The principle of weighted admixture inference is important because it pro-
vides the possibility of incorporating additional information, i.e. prior knowl-
edge of the system. This is an important direction for future work.

The estimated quantities, however, move away from simulations. We ob-
serve a good progression in the likelihood values over the iterative process
shown in Figure 3.11 and , and the admixture part of the likelihood P1 reaches
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the absolute optima after the first round of optimization, unweighted. But
then it decreases steadily in later iterations, while the covariance part of the
likelihood P2 increases steadily. The sum P1 +P2 increases over iterations and
eventually plateaus. We do not have a good explanation for this phenomenon.

Effect of unsampled population

Interpreting individual admixture is not always as straightforward as it ap-
pears. A simple two-component scenario can occur for many different reasons.

In this section, we present a simulation study demonstrating the effect
of strange admixture caused by an unsampled population. We simulate four
populations in which one receives gene flow from an unsampled population.
When we infer admixture using all population, we see admixture results that
fit simulation. When we drop all samples from the donor population, however,
we occasionally observe strange admixture results. This is demonstrated in
Figure 3.13.

The most common interpretation for the two-component sharing scenario
is inward gene flow forming the minority component. Under different demo-
graphic conditions, however, it could be inward or outward gene flow, common
ancestry but no gene flow, or the existence of unsampled populations like the
ones shown in Figure 3.13

Effect of admixture-graph-like demography

After the inference of population covariances, Ohana provides a process to
approximate the covariance values into a phylogenetic tree. This module gives
us a fast visualization of the inferred quantities, but it does not always fit with
the reality, which may or may not be tree-like.

In this section, we present a simulation study demonstrating the effect
of a demography that is not tree-like. The simulated demography, shown in
Figure 3.15, involves an admixture event, which forms the ancestor of one of
the modern populations sampled for the analysis. For the comparison, we also
present a simulation study that has a tree-like demography, shown in Figure
3.16.

We observe in Figure 3.16 an accurate recovery of the simulated demog-
raphy. This is expected because this simulation follows a tree-like evolution.
We observe from Figure 3.15 that the estimated covariance tree indeed does
its best to visualize population relationships restricted to a tree-like evolution.
The estimated population tree groups together populations that are close to
each other with respect to split times and gene flow. For the portion of de-
mography that does follow a tree-like evolution, the estimated population tree
accurately recovers the simulated demography.
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Figure 3.8: Simulation study for different divergence scenarios. The short
divergence scenario (top) fails to accurately estimate individual admixtures.
This leads to an inaccurate estimation of the population tree. The medium di-
vergence scenario (middle) recoveries both the admixture and population tree
nicely. The deep divergence scenario (bottom) produces accurate individual
admixtures but poorly estimates the population tree.
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Figure 3.9: Simulation study for un-admixed case. We use coalescence simu-
lation to produce sequences according to a given tree structure (top left). We
estimate with a range of K values to mimic real data analysis. We observe
good estimates for all quantities and a nice progression when the K value
increases.
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Figure 3.10: Simulation study for admixed case. This simulation experiment
is similar to the one shown in Figure 3.9 except that we simulate one more
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the previous experiment shown Figure 3.9 persist after the addition of the
admixed individuals and population.
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Figure 3.11: Effect of joint inference in simulation data, case #1. We use
coalescence simulation to produce sequences according to a given tree structure
(top left). We perform joint estimation over iterations of inferring admixture
and covariances. We observe a good progression of P1, P2, and their sum, but
over iterations the estimated quantities deviate from the simulation.
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Figure 3.12: Effect of joint inference in simulation data, case #2. This simu-
lation experiment is similar to the one shown in Figure 3.11 except we use a
higher K value. The conclusions observed from Figure 3.11 still hold for this
experiment.
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Figure 3.13: Unsampled source population causes abnormal admixture under
certain simulation conditions. We simulate pop #1 to receive gene flow from
pop #4. When we infer admixture using all population, we see proper ad-
mixing in pop #1. This is shown in K = 3 on the left. But when we remove
pop #4 samples from the input data, we arrive at pop #2 as the admixed
population. This is shown in K = 2 on the right.
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Figure 3.14: Unsampled source population, in most cases, does not cause
strange admixture estimates. Except for the simulation parameters, this ex-
periment is identical to the one in Figure 3.13. We do not observe the strange
two-component sharing in pop #2.
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Figure 3.15: Simulation with a demography involving an admixture event.
We observe good admixture results. The estimated tree structure provide the
closest tree approximation of the simulated demography.
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Figure 3.16: Simulation with a tree-like demography. We observe good infer-
ence results. The admixture and covariance relationship of all populations,
including the un-sample population, are recovered.
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3.8 Biological data analysis

Admixture and population tree

We have used Ohana in several collaborative projects to analyze real biological
data. Since the initial software release, many other groups have also been using
Ohana to analyze their own data. Due to the sensitivity of genomic data for
any to-be-published work, in this section, we present a set of real data analysis
that does not involve results that may be of interest in any data projects.

This dataset is a compilation of world population containing 80 individuals
and 11,793 markers. For each K value, we collect 32 executions with random
seeds from 0 to 31, and we report results from the execution that reached the
best likelihood for this K. Figure 3.17 and 3.18 demonstrate the estimated
admixture and population trees for a range of K values.

Selection study

The essential goal of Ohana is to perform selection study while fully taking
advantage of structured genomic data. The selection model is fully developed
but not as well tested through simulations. This is the immediate future task.
We do, however, have some real data analysis.

We used a compilation of English, Han, and Yoruba from the 1000 Genomes
project. The dataset contains 90 individuals, 30 per group, and 5,660,192
markers. We first sampled 161,645 markers to infer the admixture propor-
tions. We then estimated allele frequencies for all markers. We scanned for
these allele frequencies for covariance outliers using α× Ω. We selected peak
SNPs based on two criteria: this SNP has the highest likelihood ratio within
100,000 bp, and this SNP is not the only one within 100,000 bp that falls into
the most extreme 1% of the likelihood ratios. Copied below are the top 50
highest peaks.

Figure 3.20 shows the top four genes within 1,000,000 regions. These are
the top peaks, but multiple peaks within 1,000,000 regions are not shown. For
example, peaks on SULT1C4 and GCC2 rank high, but they are within the
1,000,000 range of the peak on EDAR, which ranks even higher, so only the
peak on EDAR is listed below.
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chr pos rsid English Han Yoruba LLRatio Gene
15 48426484 rs1426654 0.1167 0.4167 0.4000 14.0643 SLC24A5
5 33951693 rs16891982 0.1000 0.2000 0.1000 13.2122 SLC45A2
2 109513601 rs3827760 0.2667 0.3167 0.5667 10.6272 EDAR
17 4400392 rs11657785 0.5833 0.5000 0.3667 10.1500 x
2 108997262 rs4149433 0.4000 0.0333 0.1167 10.1104 SULT1C4
2 109118851 rs12618349 0.2667 0.0000 0.0000 9.6052 GCC2
2 109257152 rs1866188 0.1667 0.3500 0.1500 9.6052 LIMS1
15 28187772 rs1545397 0.0333 0.1000 0.3000 9.3464 OCA2
2 109362162 rs12620921 0.5333 0.5500 0.3667 9.1118 RANBP2
1 234332412 rs666263 0.4500 0.0167 0.1167 8.7796 SLC35F3
16 48375777 rs6500380 0.0000 0.0000 0.0333 8.7035 LONP2, MIR548AE2, MIR5095
10 78117929 rs2395375 0.3333 0.2333 0.2333 8.6358 C10orf11
2 26296089 rs34537429 0.2000 0.0667 0.5167 8.6302 RAB10
16 48258198 rs17822931 0.3000 0.7167 0.1000 8.3813 ABCC11
1 36037222 rs6425948 0.1167 0.1000 0.0500 8.3562 x
2 26113913 rs78404020 0.0000 0.0000 0.2833 8.2696 x
16 30602319 rs59385041 0.2000 0.1667 0.0167 8.2696 x
10 94855135 rs11187277 0.5000 0.0833 0.6833 8.1600 x
10 55613123 rs10763013 0.1333 0.4500 0.0000 8.1330 PCDH15
1 36158589 rs11264189 0.2000 0.0167 0.0000 8.1010 x
2 74761422 rs6707302 0.5500 0.4000 0.3167 8.1010 LOXL3
10 115148533 rs12262703 0.2667 0.4833 0.4667 8.0888 x
1 204859749 rs7541623 0.7000 0.1667 0.2333 8.0648 NFASC
12 80193361 rs2694658 0.1000 0.0000 0.1833 7.9769 PPP1R12A
1 35926150 rs1768560 0.2667 0.3333 0.5167 7.8710 KIAA0319L
12 101738184 rs6538985 0.1833 0.3500 0.2833 7.8698 UTP20
2 74864999 rs6739708 0.5333 0.4000 0.2667 7.7956 M1AP
10 119750413 rs7084970 0.1833 0.0000 0.0667 7.7956 x
20 2078995 rs2875718 0.0333 0.0000 0.2667 7.7769 x
15 28495956 rs12912427 0.1167 0.3000 0.0667 7.7576 HERC2
6 7058319 rs531077 0.1333 0.0667 0.3833 7.7549 x
2 242087712 rs7577489 0.2667 0.1500 0.1000 7.7457 PASK
1 168810025 rs10800388 0.1333 0.0333 0.2000 7.7028 x
1 1987803 rs2803309 0.9167 0.1000 0.1500 7.6561 x
2 74641624 rs2240444 0.3833 0.5500 0.1667 7.6200 C2orf81
3 64505376 rs11718026 0.5667 0.0833 0.1167 7.6200 ADAMTS9
20 2315543 rs6132532 0.3167 0.0000 0.7667 7.6066 TGM3
2 136407479 rs1446585 0.0500 0.1000 0.0330 7.6065 BNC2
15 28356859 rs1129038 0.3000 0.6000 0.0167 7.6065 HERC2
17 19174874 rs1467028 0.3167 0.4167 0.5167 7.6065 EPN2, EPN2-IT1
7 28065278 rs4722751 0.0500 0.0667 0.1667 7.5974 JAZF1
10 78889487 rs2616645 0.1667 0.1333 0.0833 7.5325 KCNMA1
2 13896241 rs12470874 0.2167 0.0000 0.0833 7.5227 x
12 80299468 rs10862022 0.1000 0.0000 0.2667 7.5005 PPP1R12A
10 119898665 rs853599 0.4000 0.3000 0.2000 7.4368 CASC2
1 35725203 rs11581846 0.0833 0.0000 0.1333 7.3991 x
1 1385211 rs1312568 0.8333 0.0167 0.1000 7.3947 ATAD3C
2 19075323 rs12472380 0.4500 0.0167 0.1167 7.3947 x

Table 3.2: The top 50 peaks of a selection scan of English, Han, and Yoruba.
We identify peaks as the marker location that has the highest likelihood ratio
within 100,000, and it is not the only marker within 100,000 that falls into
the most extreme 1% of the likelihood ratios.
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Figure 3.17: Admixture and population tree analysis of a world population
containing 9 populations of 493 individuals and 11142 markers using K = 9.
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Figure 3.18: Admixture and covariance tree estimations for a range of K
values. Here we see a nice progression of the estimated quantities. Each
population component become isolated with respect to its relations with the
rest of the populations.
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Figure 3.19: Summary of the selection scan for English, Han, and Yoruba. We
obtain likelihood ratios from a selection scan using the scalar value multiplied
to the entire covariance matrix. We plot the likelihood ratios against marker
locations. Vast majority of the markers have a likelihood ratio of zero. The
peak locations on this plot are the potential selection hot spots for further
investigation.
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Figure 3.20: Example selection peaks and their annotations. They are the top
four genes shown in a 1,000,000 regions. They are identified as the top four
from likelihood ratios shown in Figure 3.19.
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3.9 Software performance comparison
When genotype observations are used as the input, Ohana’s qpas can be com-
pared directed with previous software using the same modeling. This includes
ADMIXTURE, STRUCTURE, and FRAPPE. In [1] we see the clear superi-
ority of ADMIXTURE over other tools of the same class. In this section, we
compare Ohana’s qpas with ADMIXTURE. On average, Ohana outperforms
ADMIXTURE for both accuracy and speed.
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Figure 3.21: Performance comparison between Ohana’s qpas and ADMIX-
TURE, currently the best software for admixture analysis. Ohana initiates
with less optimal solutions, but it accelerates faster and outperforms ADMIX-
TURE in likelihood achievements.
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Dataset #1 Dataset #2
K Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff
2 -1967733 -1967733 0 -3835358 -3835365 7
3 -1956785 -1956799 14 -3799873 -3799887 14
4 -1946218 -1946244 26 -3788598 -3788607 10
5 -1935775 -1936025 250 -3777351 -3777361 11
6 -1925636 -1925877 241 -3766558 -3766540 -18
7 -1915552 -1915743 191 -3755851 -3755860 9
8 -1905430 -1905638 209 -3746227 -3745412 -815
9 -1895372 -1895879 507 -3735240 -3736079 839
10 -1885306 -1885466 160 -3725558 -3725624 66
11 -1875503 -1875853 350 -3715543 -3715157 -385
12 -1865492 -1865965 474 -3706069 -3707715 1646
13 -1855502 -1856262 760 -3697531 -3698519 987
14 -1845732 -1846490 758 -3688970 -3689124 154
15 -1836315 -1836775 460 -3681092 -3680829 -263

Dataset #3 Dataset #4
K Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff
2 -1857263 -1857263 0 -288991 -288991 0
3 -1848450 -1848451 1 -279462 -279463 1
4 -1841198 -1841199 1 -275212 -275213 1
5 -1834377 -1834378 1 -271807 -271808 1
6 -1827829 -1827830 2 -268837 -268832 -5
7 -1821445 -1821458 13 -265907 -265923 17
8 -1815214 -1815214 0 -263052 -263096 44
9 -1809084 -1809101 18 -260268 -260440 172
10 -1802911 -1802906 -5 -257539 -257736 197
11 -1796763 -1796847 84 -254920 -254961 41
12 -1790671 -1790811 140 -252196 -252266 70
13 -1784688 -1784765 77 -249456 -249468 12
14 -1778599 -1778671 73 -246760 -246817 56
15 -1772555 -1772669 114 -244058 -244298 240

Table 3.3: Highest log likelihoods achieved from ADMIXTURE and Ohana’s
qpas over a range of K values. For each dataset, each program, and each K,
we execute 100 times using random seeds 0, 1, ..., 99. In 54 out of 60 cases,
Ohana’s qpas reports higher likelihoods. Dataset #1 contains 118 Europeans
of 17,507. Dataset #2 is the benchmark dataset used in ADMIXTURE [1].
It contains 324 CEU, YRI, MEX, and ASW individuals and 13,928 markers.
Dataset #3 is a compilation of 171 Han Chinese with 9,822 markers. Dataset
#4 is a worldwide population of 60 individuals with 4,695 markers.
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3.10 Concluding remarks

Project Ohana started during my time visiting prof. Rasmus Nielsen at the
Center for Theoretical Evolutionary Genomics at the University of California
Berkeley. I participated in a large, collaborative project researching the genetic
history of Aborigine Australians. The admixture and population tree analysis
I produced using Ohana fundamentally changed the nature of this project.
The project concluded successfully, and a corresponding article was accepted
and will appear in Nature. The results from Ohana’s analysis appear in the
main article. I also provided a brief outline of the framework, which appears
in the Supplementary Information accompanying this Nature article, shown
in Appendix D.

After the Australian project, I started to focus my effort on finalizing the
methods and software development. The essential goal of this set of tools is to
perform selection analysis fully taking advantage of structured genomic data.
This naturally splits the framework into two parts, one for structure analysis
and tree inference and the other for selection study. Prof. Rasmus Nielsen and
I decided to write two manuscripts to describe the methods used in Ohana.
The first one focused on the structure and population tree analysis, and the
second one will focus on selection study.

The first method manuscript, shown in Appendix C, imparts the theory
behind programs qpas, cpax, and nemeco. I evaluated the inference results
with simulation study and real data analysis. I explored model limitations for
Gaussian modeling of allele frequencies. I also performed software comparison
to establish Ohana’s admixture analysis as a faster and more accurate tool
than the best tool currently available.

Besides the Australian project, I have been involved in several collaborative
projects using Ohana. They are in different stages of development. Some are
still in the data collection phase. Some have already reached the manuscript
phase. A corresponding paper for one such project is included in Appendix E.

Many potentially prominent methods and applications could stem from the
current framework implemented in Ohana. The modeling and optimization
techniques used in Ohana are not restricted to population genetics. Mixture
models are used in many subfields of machine learning, such as handwriting
recognition, fuzzy image segmentation, and financial return models, to name
a few. For the immediate future, we will continue to focus on population
genetics.

Future work

The immediate next stage for project Ohana is the second method manuscript,
which will focus on the selection module. For this work, I have implemented
several selection models. These models leverage structured genomic data,
and they vary in the strength of identifying certain types of selection signals,
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e.g. focusing on local adaptation, differentiating ancient versus modern, and
targeting each time slice over evolution. In addition, I have obtained some
exciting results from real data analysis. What is most needed at this stage
is additional simulation study, not only simulations under neutrality, but also
simulations with selection signals. For the latter, I need to show that Ohana
is able to identify selection signals, and then I will compare Ohana’s selection
power with other selection identification methods that require prior grouping,
such as F statistics and population branch statistics.

The quadratic programing setup allows for additional likelihood modules
to be inferred jointly, assuming their analytical forms satisfy certain condi-
tions, such as being second-order differentiable and consistent with the block
structure. This would provide ways to incorporate additional information or
penalties while estimating the admixture and population trees. For example,
it might be interesting to add weight parameters based on the geographic
distances of the samples.

Another direction of extending the current framework could focus on the
population relations and the tree-like assumption. Rather than estimating
trees, population networks and admixture graphs would be more general and
hence more informative. Exploring graph topologies or just tree topologies is
a complex problem, but constraints could be added or a collection of possible
topologies could be provided to assist the inference.
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CoalHMM method #1

This paper summarizes my work on CoalHMM’s optimization and modular
model construction. I investigated, implemented, and compared several black-
box style optimization techniques with the emphasis on heuristic-based evolu-
tionary algorithms. This paper also presents a range of models demonstrating
the capability of complex model construction. Finally, in this paper I present
simulation studies to evaluate these new additions.
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a b s t r a c t

With full genome data from several closely related species now readily available, we have the ultimate
data for demographic inference. Exploiting these full genomes, however, requires models that can explic-
itly model recombination along alignments of full chromosomal length. Over the last decade a class of
models, based on the sequential Markov coalescence model combined with hidden Markov models, has
been developed and used to make inference in simple demographic scenarios. To move forward to more
complex demographic modelling we need better and more automated ways of specifying these models
and efficient optimisation algorithms for inferring the parameters in complex and often high-dimensional
models.

In this paper we present a framework for building such coalescence hidden Markov models for pairwise
alignments and present results for using heuristic optimisation algorithms for parameter estimation. We
show that we can build more complex demographic models than our previous frameworks and that we
obtain more accurate parameter estimates using heuristic optimisation algorithms than when using our
previous gradient based approaches.

Our new framework provides a flexible way of constructing coalescence hidden Markov models almost
automatically. While estimating parameters in more complex models is still challenging we show that
using heuristic optimisation algorithms we still get a fairly good accuracy.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Background

Coalescence theory provide a very powerful framework for
genetics modelling and inference, and the coalescence process with
recombination underlies many important analysis tools. Draw-
ing inference from sequences with recombination, however, often
involves integrating over all possible ancestries, modelled as the so-
called ancestral recombination graph (ARG), a process that rarely
scales to more than a few, short sequences due to the complex-
ity and state space size of the ARG. To alleviate this, the sequential
Markov coalescence approximation assumes that statistical depend-
encies between local genealogies are Markov (McVean and Cardin,
2005; Marjoram and Wall, 2006; Chen et al., 2009; Hobolth and
Jensen, 2014).

In recent years a number of inference tools have been devel-
oped based on combining the sequential Markov coalescence with
hidden Markov models, constructing so-called coalescence hidden

∗ Corresponding author. Tel.: +45 87155572.
E-mail addresses: ycheng@birc.au.dk (J.Y. Cheng),

mailund@birc.au.dk (T. Mailund).

Markov models or CoalHMMs, that have been constructed for the
inference of speciation times (Hobolth et al., 2007; Dutheil et al.,
2009; Mailund et al., 2011), gene-flow patterns (Steinrücken et al.,
2013; Mailund et al., 2012), changing population sizes (Li and
Durbin, 2011; Sheehan et al., 2013; Schiffels and Durbin, 2014) or
inference of recombination patters (Munch et al., 2014) and have
been used in a number of whole genome analyses (Locke et al.,
2011; Scally et al., 2012; Prado-Martinez et al., 2013; Prüfer et al.,
2012; Miller et al., 2012). These models exploit that even a very
small sample of full genomic sequences holds a wealth of informa-
tion about the sample’s ancestry: Loci sufficiently far apart in the
genome can, because of recombination in the sample’s history, be
considered essentially independent samples from the underlying
sample populations.

The crux of constructing a CoalHMM is describing the proba-
bility of transitioning from one local genealogy along a sequence
alignment to the next in terms of the underlying population
genetics parameters of interest. This is typically done either by
considering the probability of changing to a new genealogy con-
ditional on a current one (Hobolth and Jensen, 2014; Li and Durbin,
2011) or by considering the joint distribution of two neighbouring
trees (Dutheil et al., 2009; Mailund et al., 2011). In either case it

http://dx.doi.org/10.1016/j.compbiolchem.2015.02.001
1476-9271/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (A) An ancestral recombination graph over three sequences, showing two
recombinations and (B) the corresponding three local genealogies. The example
shows the ancestry of three sequences in the case where they have experienced two
recombination events, shown in red and green. These recombinations segments the
sequences into three regions, shown in blue, orange and purple, each with different
tree genealogies.

involves the explicit enumeration of all possible genealogies and
a set of formulas for each possible transition. The formulas for
transition probabilities, however, are very similar for transitions
between similar genealogies and so constructing these formulas
can be somewhat automated (Mailund et al., 2012).

Below we give a short introduction to the essentials of coales-
cence theory and coalescent hidden Markov models for inference
of demographic parameters and in Section 3 we describe a new
framework we have developed that makes it simple to con-
struct so-called isolation-with-migration demographic models for
analysis of pairwise alignments. This framework is similar to
a more general framework for larger sample sizes (Mailund
et al., 2012) but automates much of the model specification. The
new framework is available under open source licence GPLv2 at
https://github.com/mailund/IMCoalHMM.

1.1. Coalescence processes

Coalescence theory (Hein et al., 2005) describes the ancestry
of a sample of present day genes and gives probabilities to all the
possible genealogies that could have created the variation seen in
the samples. The typical description of the coalescence model is
as a continuous time Markov process running backwards in time,
describing the various events that could have occurred in the past.
An outcome of such a process is a tree-genealogy where inner nodes
correspond to where two lineages find their most recent common
ancestor. The time-depths of these nodes, and thus the branch
lengths of the tree, are given by the rate of coalescence, a parame-
ter that is determined by the size of the population the samples are
taken from.

Extended with recombination, each lineage can also split into
two. At a recombination event a lineage is split into a left and a right
segment that then evolve back in time as two independent lineages.
The outcome of this process is no longer a tree but a directed acyclic
graph called the ancestral recombination graph or ARG (see Fig. 1A).
While not a tree itself, the ARG represents a set of trees since at
each position along the sample sequences a single tree describes
the genealogy at that position (see Fig. 1B). At positions where a
recombination has occurred the tree to the left and to the right of
the recombination position can be different. The probability density
over all possible ARGs thus also provides a joint probability for all
the corresponding local tree-genealogies.

Structured populations can be modelled by assigning lineages
to different populations, allow migration events to move lineages
from one population to another, and only allow lineages to coalesce
when within the same population. Population splits or admixing
can be added simply by setting populations to be equal or randomly
assigning lineages with one label to two or more new population
labels.

Mutations on lineages can also be considered events that can
occur as the process runs back in time, but typically mutations are
put on the coalescence tree or ARG after it is simulated. There,
the mutations can simply be put on the genealogy as a Poisson
process or be put on inner nodes using a substitution model. The
latter approach makes it possible to sum over all possible sequences
at internal nodes using standard methods such as Felsenstein’s
peeling algorithm (Felsenstein, 1981) and this way obtain a joint
probability distribution for the sequences at the leaves, i.e. the
present day samples. This distribution depends only on the local
tree-genealogies induced by the ARG since the possible nucleotides
at any given position only depends on the tree for that given posi-
tion.

If we denote by � the relevant parameters for the coalescence
process, e.g. coalescence rates, migration rates, recombination rates
and mutation rates, we can let f (G | �) denote the probability den-
sity for the process producing the specific genealogy G and let
f (A |G, �) denote the probability that putting mutations on geneal-
ogy G produces the aligned samples A. Typically the latter only
depends on the mutation rate while the former is independent of
the mutation rate but depends on rates (migration, recombination
etc.) and time units (e.g. times where a population split apart or
migration between two populations happend). These latter param-
eters can be expressed in time units of mutations, in essence setting
� = 1, so we can simplify the two densities to just f (G | �) and f (A |G).

For demographic inference it is the parameters � that are of
interest rather than the actual underlying genealogy which is
considered a nuisance parameter to be integrated out to get the
likelihood

lhd(� |A) =
∫

f (A |G)f (G | �) dG.

This integral over all possible genealogies is generally not effi-
ciently computable and must either be approximated through
sampling approaches or by approximating the coalescence pro-
cess with a simpler model where the integral can be computed.
The latter is the approach taken with coalescence hidden Markov
models.

1.2. Coalescence hidden Markov models

The key approximation in CoalHMMs is assuming that the dis-
tribution of local genealogies along an alignment is Markov in the
sense that when moving from one tree to another across a recom-
bination point, the next tree depends only on the current tree and
not any others. By approximating the distribution of local genealo-
gies by a Markov chain the probability of the full genealogy reduces
to specifying the joint probability of two neighbouring genealogies
(which might be identical genealogies, e.g. if there is no recombi-
nation between them). Let � denote the “left” genealogy and r the
“right” genealogy and J�(� , r) their joint density. Then the “transi-
tion density” T�(r|�) is given simply by

T�(r |�) = J�(�, r)
p�(�)

.

where we define

p�(�) =
∫

J�(�, r′)dr′.

as the marginalisation over all possible right genealogies and thus
the likelihood for just seeing the left genealogy.
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If our data A consists of L nucleotides then the underlying
genealogy G consists of L local trees G = G1,G2, . . .,GL then

f (G | �) = p�(G1)
L∏

i=2

T�(Gi |Gi−1).

The alignment probability given these local genealogies separa-
tes into probabilities for the individual nucleotides so if Ai denotes
the i’th column in the alignment then

f (A |G) =
L∏

i=1

E(Ai |Gi).

where E(Ai |Gi), the “emission probability”, is the probability that
the Ai column was produced by tree Gi and can be computed using
the peeling algorithm.

In order to integrate over all genealogies we further approxi-
mate by discretising the possible time points where inner nodes
can be found in the trees. We split the possible coalescence times
into n intervals and place all events in the same interval at a single
time point. This reduces the space of possible genealogies to a finite
set that can be explicitly summed over, so

p�(�) =
∑

r′
J�(�, r′).

and∫
f (A |G)f (G | �)dG =

∑

G1,...,GL

[
p�(G1)E(A1 |G1)

L∏

i=2

T�(Gi |Gi−1)E(Ai |Gi)

]
.

This equation takes the form of a hidden Markov model (Rabiner,
1989) where the sequence A1, . . .,AL is the observable sequence
and G1, . . .,GL the hidden Markov sequence. There is an exponen-
tial number of genealogies this way but by rearranging the sum and
using dynamic programming in what is known as the Forward algo-
rithm it can be computed in time O(N2L) where L is the sequence
length and N the number of possible genealogies. In the framework
we describe in this paper we always consider pairwise alignments
so a local genealogy consists simply of a coalescence time and with
n time intervals there are n possible genealogies, and thus the like-
lihood of a demographic model can be computed in O(n2L) running
time using a CoalHMM, once J�(� , r) is specified.

In practise we can exploit repetitions in the alignment to reduce
it further and in our framework we use the ZipHMM library (Sand
et al., 2013) that lets us compute the likelihood of an entire genome
alignment in a a few seconds to a few minutes depending on how
finely we discretise time. For this library we simply need to specify
the hidden Markov model using the transition matrix T�(r|�) which
we compute using J�(� , r) and the emission matrix E(Ai |Gi) which
we compute using a Jukes-Cantor substitution model (Jukes and
Cantor, 1969), where it is simply determined by the coalescence
time of the Gi genealogy. The way our new framework makes it
almost automatic to compute J�(� , r) is described in Section 2.

1.3. Parameter inference

Previous versions of our CoalHMM framework used the
Nelder–Mead method (Nelder and Mead, 1965), or downhill sim-
plex method, to estimate the parameter set for a CoalHMM by
maximising the log-likelihood values calculated from the Forward
algorithm. This optimisation method was developed by John Nelder
and Roger Mead in 1965 as a technique to minimise an objective
function in a many-dimensional space. In the context of CoalHMM,

Fig. 2. An iteration of the Nelder–Mead method over two-dimensional space, show-
ing point pmin reflected to point pr, expanded to point pe, or contracted to point pc.
If these test points do not improve the overall score of the simplex, then it shrinks
around the point pmax with the highest score.

each dimension corresponds to a model parameter. CoalHMM
infers parameters using maximum likelihood estimations, so the
scores returned from its objective function simply correspond to
the negated log-likelihood values.

The Nelder–Mead method is an iterative process that contin-
ually refines a simplex, which is a polytope of D + 1 vertices in D
dimensions. During each iteration, the objective function is evalu-
ated to determine a score at each point in the simplex (see Fig. 2).
The point pmin with the lowest score is reflected through the cen-
troid of the remaining vertices to point pr. If the score at pr is neither
the highest nor the lowest score, then pr is used in place of pmin to
form the simplex for the next iteration. If the score at pr is the high-
est score in the simplex, then this reflected point is expanded away
from the centroid to pe and used in place of pmin to form the next
simplex. If the score at pr is still the lowest score, then pr is con-
tracted toward the centroid to point pc. If the score at pc is no longer
the lowest score, then it is used to replace pmin to form the next sim-
plex. Otherwise, all points in the simplex shrink around the point
pmax with the highest score. This process continues until the sim-
plex collapses beyond a predetermined size, a maximum length of
time expires, or a maximum number of iterations is reached.

The amount of effect these possible actions have on the simplex
is controlled by supplying to the algorithm coefficients for reflec-
tion �, expansion �, contraction � , and shrinkage �. Standard values
are � = 1, � = 2, � = 1/2, and � = 1/2 (Baudin, 2009); but fine-tuning
these coefficients has the potential to improve the performance of
the algorithm.

1.3.1. Genetic algorithms
A Genetic Algorithm (GA) is a type of evolutionary algorithm.

This optimisation technique gained popularity through the work
of John Holland in the early 1970s (Holland, 1992). It operates
by encoding potential solutions as simple chromosome-like data
structures and then applying genetic alterations to those struc-
tures. Over many iterations, its population of chromosomes evolves
toward better solutions, which it determines based on fitness val-
ues returned from an objective function. The algorithm typically
terminates when the diversity of its population reaches a pre-
determined minimum, a maximum length of time expires, or a
maximum number of iterations has completed.

GAs typically operate in three phases: Selection, Crossover, and
Mutation (see Fig. 3). Selection determines a subset of a population
what will breed the next generation of individuals, and a variety of
selection schemes exist. In one scheme, Roulette Wheel Selection
(RWS) (Goldberg, 1989), the algorithm selects individuals based on
their relative fitness within the population; the probability pi of
selecting an individual i is given by pi = fi/

∑N
j=1fj , where fi is the

fitness of the individual and N is the population size. While RWS
works by repeatedly sampling the population, a variation of RWS,
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Fig. 3. In one iteration of the genetic algorithm’s evolution, it operates in three
stages: Selection, where it chooses a relatively fit subset of individuals for breed-
ing; Crossover, where it recombines pairs of breeders to create a new population;
and Mutation, where it potentially modifies portions of new chromosomes to help
maintain the overall genetic diversity. Arrows in the diagram indicate transitions
into the next genetic operation within one generation.

Stochastic Universal Sampling (SUS) (Baker, 1987), uses a single
random value to sample all breeders by choosing them at evenly
spaced intervals; this gives less fit individuals a greater chance
to breed. RWS and SUS are both examples of fitness proportion-
ate selection, but other selection schemes are based only on rank,
and these are particularly beneficial when the lower and upper
bounds of a fitness function are hard to determine. For example,
in Tournament Selection (Miller et al., 1995), the algorithm selects
an individual with the highest fitness value from a random subset
of the population.

Crossover is a genetic operation used to combine pairs of indi-
viduals previously selected for breeding the following generation,
and like Selection, several Crossover schemes exist. In One Point
Crossover, the algorithm chooses a single point on both parents’
chromosomes, and it forms the child by concatenating all data prior
to that point from the first parent with all data after that point from
the second parent. In Two Point Crossover, the algorithm instead
chooses two points, which splits the parents’ chromosomes into
three regions; the algorithm then forms the child by concatenating
the first region from the first parent, the second region from the sec-
ond parent, and the third region from the first parent. While nature
serves as the inspiration for One and Two Point Crossover, Uniform
Crossover (Syswerda, 1989) has no such biological analogue. In Uni-
form Crossover, each position on the child’s chromosome has equal
opportunity to inherit its data from either parent.

Mutation is the third phase in many GAs. Every position on every
chromosome has a certain probability to mutate, which helps the
population maintain or even improve its genetic diversity. Several
variants of this technique exist. In Uniform Mutation (Michalewicz,
1996), when a position mutates, the algorithm replaces its value
with a new value, chosen at random, between a predetermined
lower and upper bound. In another variant, Gaussian Mutation
(Deb, 2001), when a position mutates, its current value increases
or decreases based on a Gaussian random value.

1.3.2. Particle swarm optimisation
Particle Swarm Optimisation (PSO) is another type of heuris-

tic based search algorithm. Eberhart and Kennedy first discovered
and introduced this optimisation technique through simulation of a
simplified social model in 1995 (Eberhart and Kennedy, 1995). Sim-
ilar to GAs, PSOs are highly dependent on stochastic processes. Each
individual in a PSO population maintains a position and a velocity as
it flies through a hyperspace in which each dimension corresponds
to one position in an encoded solution. Each individual contains a

Fig. 4. Three vectors applied to a particle at position xi in one iteration of a Particle
Swarm Optimisation: a cognitive influence urges the particle toward its previous
best pi , a social influence urges the particle toward the swarm’s previous best pg ,
and its own velocity vi provides inertia, allowing it to overshoot local minima and
explore unknown regions of the problem domain.

current position, which evaluates to a fitness value. Each individual
also maintains its personal best position pi and tracks the global
best position pg of the swarm (see Fig. 4). The former encapsu-
lates the cognitive influence, and the latter encapsulates the social
influence. A PSO works as an iterative process. After each itera-
tion, the algorithm adjusts the position of each individual based
on its knowledge of pi and pg. This adjustment is analogous to the
crossover operation used by GAs. The inertia of an individual, how-
ever, allows it to overshoot local minima and explore unknown
regions of the problem domain.

In PSO, we represent the position of the ith particle as xi = (xi,1,
xi,2, . . ., xi,D) and its velocity as vi = (vi,1, vi,2, . . ., vi,D), where D is
the number of dimensions in the parameter space. We represent
the particle’s previous position with its best fitness as pi = (pi,1, pi,2,
. . ., pi,D). During each iteration, the algorithm adjusts the velocity v
and position x according to the following equations:

v′
i,d
← vi,d +	p · rp · (pi,d − xi,d)

+	g · rg · (pg,d − xi,d)

x′
i,d
← xi,d +vi,d.

where rp and rg are two random values between zero and one,
and 	p and 	g are two positive constants representing cognitive
and social influences. As Shi and Eberhart demonstrated (Shi and
Eberhart, 1998), it can be beneficial to include a constant ω, which
helps balance the global and local search forces. This term directly
affects the inertia of the particle.

v′
i,d
← ω ·vi,d +	p · rp · (pi,d − xi,d)

+	g · rg · (pg,d − xi,d).

2. Methods

We first describe how our framework supports constructing
CoalHMMs for pairwise alignments and then the algorithms we
have implemented for parameter estimation.

2.1. Framework for CoalHMMs for pairwise alignments

Our framework builds the joint probability distribution J�(� ,
r) by tracking all possible states of the coalescence process for
two samples with two nucleotides similar to our previous work
(Mailund et al., 2011, 2012, 2012). Demographic scenarios are spec-
ified by slicing the past into a number of “epochs” where each such
has a fixed number of populations and a fixed number of constant
rates with which events occur. Within each epoch we construct the
state space of all possible configurations within the demographic
model of the epoch and construct a continuous time Markov chain
(CTMC). Finally we stack these CTMCs on top of each other to get
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Fig. 5. The demographic IIM model. The model has three epochs and five param-
eters. An ancestral population epoch with one population and free coalescences, a
migration epoch with two populations where lineages can only coalesce within the
same population but can migrate between the populations, and an isolation epoch
where the two populations are completely independent. The parameters are the
time points where the system switches between the epochs, the coalescence and
recombination rates (assumed to be the same in all populations) and a symmetric
migration rate during the migration epoch. The time point t1, t2, . . ., t6 illustrates a
possible discetisation of time into the intervals that becomes the states of the hidden
Markov model.

a coalescence process for the two samples for all the combined
epochs and from this compute the joint probabilities of which inter-
vals the left and right nucleotides will coalesce in.

As an example, consider the Isolation with Initial Migration (IIM)
model from Mailund et al. (2012) and shown in Fig. 5. This model
has three epochs. From the most recent to the most ancient these
are (1) and epoch with complete isolation where lineages in the
two populations can never coalesce, (2) an epoch with population
structure where there are two distinct populations but where lin-
eages can migration between them, and finally (3) an epoch with a
single ancestral population.

The first epoch allows lineages to recombine and coalesce within
each population but does not allow migrations. In this time period
it is not possible for the two samples to find a common ancestor.
In the migration period, lineages can cross from one population to
another and coalesce into a common ancestor. In the final epoch the
lineages can coalesce and find common ancestors freely. To build
a CoalHMM for this demographic model it is necessary to build
CTMCs for the three epochs, combine them to build a model for
the entire demographic past and then use this model to specify the
joint probability J�(� , r).

2.1.1. Building continuous time Markov chains
To track the possible histories within an epoch we explicitly

construct the state space of the two-locus coalescence process; an
approach taken in several earlier papers (Slatkin and Pollack, 2006;
Simonsen and Churchill, 1997; Mailund et al., 2011; Hobolth and
Jensen, 2014). Since explicitly enumerating all states and transi-
tions is both tedious and error-prone we avoid this by letting the
computer enumerate all states in a transition system. The states
and transitions are defined as in our previous IIM paper (Mailund
et al., 2012) but repeated below for completeness of this paper.

We represent lineages at a single nucleotide as sets. The sets
{

1
}

and
{

2
}

denote sequences 1 and 2 before they have found a com-

mon ancestor while
{

1, 2
}

denote a lineage ancestral to both. We
then model two neighbouring nucleotides as pairs of such states, so
e.g.

({
1, 2

}
,
{

1
})

denote a lineage where the left nucleotide has
found a common ancestor between sample 1 and 2 and is linked
on the right to a nucleotide from the sequence 1, which has not
found a common ancestor with sequence 2. To assign lineages to
species, we pair them again, and let [1, (l, r)] denote that lineage

Fig. 6. An ancestral recombination graph in the IIM model with lineages in the nota-
tion of the transition system. The state at any particular point in time, corresponding
to a horizontal line through the ARG, would be the number of lineages at that
particular time. The initial state is {(1,({1},{1})), (2,({2},{2}))} that through a recom-
bination transition (R) moves to {(1,({1},{1})), (2,({2},Ø)), (2,(Ø,{2}))}. The system
now moves from its isolation epoch to its migration epoch and the next event is a
migration event (M) that changes the state to {(1,({1},{1})), (1,({2},Ø)), (2,(Ø,{2}))}
followed by a coalescence event (C) and the state {(1,({1,2},{1})), (2,(Ø,{2}))}. Now
the system moves to the ancestral population epoch where this state is projected
to the state {(a, ({1, 2}, {1})), (a,(Ø,{2}))} and the final event is a coalescence event
changing the state to {(a, ({1, 2}, {1, 2}))}.

(l, r) is in population 1. A state in the CTMC corresponds to a set of
such lineages assigned to species.

We define the following transitions of states:

Coalescence:
{

[p1, (l1, r1)]
}
∪
{

[p2, (l2, r2)]
}
∪ S→{

[p1, (l1 ∪ l2, r1 ∪ r2)]
}
∪ S if p1 = p2

Recombination:
{

[p, (l, r)]
}
∪ S→

{
[p, (l,∅)]

}
∪
{

[p, (∅, r)]
}
∪ S

Migration:
{

[p1, (l, r)]
}
∪ S→

{
[p2, (l, r)]

}
∪ S if p1 /= p2.

where S denotes the set of other lineages in the state.
When migration is not allowed in the epoch, as in the first epoch

in the IIM model, we simply leave that transition out of the tran-
sition system when computing the state space. Fig. 6 shows and
example of a run in this transition system specified for the IIM
model.

As the initial state of the system, we use the state where
sequence 1 is in population 1, sequence 2 is in population 2,
and both sequences have their left and right nucleotides linked,{[

1,
({

1
}

,
{

1
})]

,
[
2,
({

2
}

,
{

2
})]}

, and we then compute a
graph of all states reachable from this state through the transi-
tions above, labelling each edge with the kind of transformation
(coalescence, recombination or migration). From this state space
we construct a rate matrix for the CTMC by first assigning a num-
ber to each state, and then setting rates (from our parameters �) in
the matrix in entries corresponding to edges in the graph. This is
translated into an instantaneous rate matrix for the CTMC by set-
ting all diagonal cells to minus the row sum. The result is a rate
matrix for the CTMC, Q, such that Qx,y is the instantaneous rate of
moving from state x to state y. From CTMC theory the probability
of moving from state x to state y in time t is then given by

(
eQt

)
x,y

where eQt is matrix exponentiation (Moler and Van Loan, 2003).
For each time interval i in the CoalHMM we let Qi denote the rate
matrix of that interval. For intervals in the same epoch these will
of course share the rate matrix but not necessarily the probability
matrix for moving from one state to another when going through
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Fig. 7. Estimates for the isolation model from three optimisation algorithms. All three optimisers recover the simulated parameters, shown as dashed horizontal lines,
reasonably well but with a higher variance for the Nelder–Mead optimiser. The estimates of the recombination rate are downwards biased, an effect we have previously
observed and speculate is a consequence of the Markov assumption (Mailund et al., 2011).

the interval since the intervals do not necessarily have the same
length.

2.1.2. Computing joint probabilities
To compute the J�(� , r) probabilities we use ideas from Mailund

et al. (2011). Since coalescence times are discretised in time inter-
vals we use J�(� = i, r = j) to mean that the left nucleotide coalesced
in interval i and the right nucleotide in interval j. For this to be the
case, and assuming interval i is earlier than interval j, neither left
nor right nucleotide can have found a common ancestor between
the two samples when entering interval i, the left but only the left
must have when leaving interval i and this must remain the case
until entering interval j, and when leaving interval j both left and
right nucleotides must have found common ancestors for the two
samples.

Regardless of the state space for the epoch CTMC we can always
split the states into four non-overlapping (but possibly empty) sets:
B: the “beginning states” where neither nucleotides have found
common ancestors, L: the “left states” where the left nucleotides
but not the right nucleotides have found a common ancestor, R:
the “right states” where the right nucleotides but not the left
nucleotides have found a common ancestor, and E: the “end states”
where both nucleotides have found common ancestors. In terms

of these sets we can reformulate the conditions for J�(� = i, r = j) as
follows: when entering interval i we must be in a state in B but
when leaving interval i we must be in a state in L and we must
remain in L until we enter interval j and leave interval j in a state
in E. It is straightforward to identify which of these sets each state
belongs to and our framework does this automatically regardless of
the epochs specification. We will use sub-scripts to indicate which
interval and thus epoch the sets are associated with, so Bi, Li, Ri and
Ei are the sets for interval i.

Let Ti denote the probability transition matrix for changing
states when going through interval i as computed from the matrix
exponentiation of the rate matrix for the epoch of the interval
Ti = eQi�ti where �ti is the length of interval i. Since the state space
in interval i and interval i + 1 are not necessarily the same – if the
intervals are from different epochs they might not be – we use the
convention that the rows of Ti are indexed with the state space for
interval i and the columns with the state space for interval i + 1; the
starting states for Ti are from the CTMC for interval i but the end
states are from the CTMC for interval i + 1. This makes it possible to
always multiply together T matrices from adjacent intervals.

When two adjacent intervals are from the same epoch, then Ti is
specified just from the matrix exponentiation, but when the inter-
val i is from one epoch and i + 1 from another, with a different state

Fig. 8. Estimates for the isolation with initial migration model from all three optimisation algorithms. With more parameters to estimate, the variance in the estimates
goes up as expected. The parameters are still reasonably well estimated for the two heuristic optimisers, especially for the particle swarm optimiser, but less so for the
Nelder–Mead optimiser.
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Fig. 9. Estimates for the isolation with initial migration model three epochs: One isolation epoch, one migration epoch and one ancestral epoch. This corresponds to the IIM
model except that the coalescence rate is not assumed to be the same in all epochs. Again we see a failure for the Nelder–Mead to recover these parameters, and the last
coalescence rate is not well estimated. The particle swarm optimiser performs the best among three optimisers.

space, a projection matrix is necessary. Such a matrix specifies how
states in one CTMC correspond to states in another and by placing
1s in the relevant entries in a matrix P the Ti matrix is computed
simply as Ti = eQ�ti ·P. In the case of the IIM model, moving from
the isolation epoch to the migration epoch, lineages are mapped
directly as [pi, (l, r)] �→ [pi, (l, r)] since the lineages in the individ-
ual populations are the same; the state space is just larger when
migration is allowed. For going from the migration epoch into the
ancestral population both population p1 and p2 are simply mapped
to the ancestral population pA: [pi, (l, r)] �→ [pA, (l, r)]. We refer to
the documentation in the framework for details on this and more
complex projections.

LetUi denote the transition matrix for going from time zero until
the start point of interval i. This can be computed from theU1 matrix
for getting from time zero to the first interval and Tj matrices for
j < i:1

Ui = U1
i−1∏

j=1

Tj.

If the first interval starts at time zero, U1 will just be the identity
matrix. If it is not possible to coalesce for a certain time, as in the

1 In the actual implementation, intervals are indexed from zero and U1 is called
U0 but we have chosen to index from 1 in the explanation of the algorithm here.

IIM model where the lineages are isolated until migration becomes
possible, then the first interval starts later than time zero and U1

is used to address this. In the IIM U1 is computed by exponentiat-
ing the rate matrix from the isolation model multiplied with the
isolation time.

Finally, let Bi,j for i < j denote the probability matrix for going
from the beginning of interval i to the end of interval j. This can be
computed as

Bi,j =
j∏

k=i

Tk.

For computing J�(� = i, r = j) there are three cases: i = j, i < j and
i > j. All can be computed using the matrices defined above. Let �
denote the initial state for the coalescence system at time zero. For
the IIM this would be the two lineages in separate populations. For
i = j we have

J�(� = i, r = i) =
∑

b∈Bi

∑

e∈Ei+1

Ui
�,b · Ti

b,e.

with a special case for the last interval

J�(� = n, r = n) =
∑

b∈Bn

Un
�,b.
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For i < j we have

J�(� = i, r = j) =
∑

b∈Ei

∑

l∈Li+1

∑

l′∈Lj

∑

e∈Ej+1

Ui
�,b · Ti

b,l ·B
i+1,j−1
l,l′ · Tj

l′,e.

with again a special case for the last interval

J�(� = i, r = n) =
∑

b∈Ei

∑

l∈Li+1

∑

l′∈Ln

Ui
�,b · Ti

b,l ·B
i+1,n−1
l,l′ .

Since the coalescence process is symmetric in left and right we
can simply compute the cases for j < i as J�(� = i, r = j) = J�(� = j, r = i).

To specify a CoalHMM in our framework it is only necessary
to specify the Ti and U1 matrices. Mostly this is a simple case of

exponentiating rate matrices and specifying projections when
moving between epochs.

2.2. Optimisation algorithms

We have enhanced our framework by incorporating two heuris-
tic based optimisation algorithms. In both algorithms, the fitness
of an individual solution is the negated log-likelihood values com-
puted from the Forward algorithm from the CoalHMM.

2.2.1. Genetic algorithm optimiser
A GA optimiser in the CoalHMM framework initiates its first

generation of individuals by uniformly selecting parameters within
predetermined ranges. The GAs use population sizes of 100. Small

Fig. 10. Estimates for the isolation with initial migration model six epochs. Results are similar to the three epochs model. We see a failure to recover most of the parameters
from the Nelder–Mead. We see some suboptimal results for the last two coalescence rates and second migration rate from the genetic algorithm. We see the best accuracy
from the particle swarm.
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populations lose genetic diversity quickly, while large populations
result in better accuracy at the cost of increased running time. For
our models, population sizes greater than 100 did not offer signifi-
cant improvement. To form the breeding pool, we use Tournament
Selection with a selection rate of 75% of the population size with

tournament sizes of 10. We use a rank-based selection scheme
because the lower and upper bounds of the fitness are unknown
beforehand and differ from model to model; in order to use fit-
ness proportionate selection, we would need an initial phase to
estimate the fitness range. We then use One Point Crossover to

Fig. 11. Estimates for the isolation with initial migration model nine epochs. Results are similar to the three epochs and the six epochs models. We see a failure to recover
most of the parameters from the Nelder–Mead. We see some suboptimal results for the late coalescence rates and migration rates from the genetic algorithm. We see the
best accuracy from the particle swarm.
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combine two breeders and generate individuals for the next gen-
eration. We chose this simple crossover scheme because other
complex schemes failed to produce improved results. To help
genetic diversity in a population, we apply point mutations at a
rate of 15% and use Gaussian Mutation with N(� = 0, � = 0.01).
This relatively high point mutation rate is balanced by the relatively

low �; this configuration is suitable for our problem space, which
consists of short chromosomes encoded with real numbers.

2.2.2. Particle swarm optimiser
Our framework also provides a PSO optimiser. Each model

parameter corresponds to a dimension in the solution space. The

Fig. 12. Estimation accuracy with variable data sizes. For some of the parameters we see a reduction in the estimation variance with more data, but less than one would have
hoped for a factor of more than three increase in alignment length.
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optimiser initialises particle velocities from uniform random values
within a range of 2% of the predetermined range for each parame-
ter. During each iteration, we update the velocities of each particle
using coefficients determined from trial and error. For the iner-
tial coefficient, we use ω = 0.9; i.e. a 10% decay in velocity if the
particle is not affected by other forces. For the cognitive and social
coefficients, we use 	p = 0.3 and 	g = 0.1, respectively. Larger values
for 	 had the tendency to accelerate the particles beyond acceptable
ranges. Similar to our GA performance, we found population sizes
greater than 100 did not significantly improve the performance, but
they did dramatically increase the time required for the swarm to
converge.

2.3. Simulated data

We use the program ms to generate ancestral recombination
graphs under standard neutral evolutionary models with recombi-
nation, speciation, variable populations, migrations, etc. We then
use the seq-gen program to produce sequence samples of length
10 Mbp. Using the phylogenetic trees simulated by ms as input,
seq-gen evolves the sequences along the phylogeny.

3. Results and discussion

Below we illustrate how demographic inference can be done
using our new CoalHMM framework by presenting a number of
demographic models, from simple to more complex, and show
how we can estimate parameters using our heuristic optimisa-
tion algorithms. All models are available as inference scripts in the
framework.

3.1. Isolation model

The simplest model we will consider is the clean isolation model
from Mailund et al. (2011). The model has three parameters: the
split time where the ancestral population is split into two inde-
pendent populations, a coalescence rate that is the same for the
ancestral population and the two descedent populations, and a
recombination rate.

Fig. 7 shows the estimation results for all three optimisers, oper-
ating on simulated sequences consisting of 1000 Mbp. The range
on the y-axis corresponds to the range of possible values for the
GA and PSO optimisers for each parameter. The Nelder–Mead opti-
miser is not limited to these ranges and the percentage of estimates
that falls outside of the range is written below the x-axis. For this
simplest model all three optimisers recover the simulated param-
eters, shown as dashed horizontal lines, reasonably well but with
a higher variance for the Nelder–Mead optimiser. The estimates of
the recombination rate are downwards biased, an effect we have
previously observed and speculate is a consequence of the Markov
assumption (see Mailund et al. (2011) Supplemental Text 1 and Fig.
4S in the same text).

3.2. Isolation with initial migration model

The next model we consider is the IIM model from Mailund et al.
(2012) that we have used as an example in Section 2. This model
has five parameters: The time period where the two populations are
completely isolated, the time period where migration is ongoing, a
shared coalescence rate for all populations, a migration rate for the
migration epoch, and a recombination rate.

Fig. 8 shows the estimation results for this model for our
three optimisers, operating on simulated sequences consisting of
1000 Mbp. With more parameters to estimate, the variance in the
estimates goes up as expected. The parameters are still reasonably
well estimated for the two heuristic optimisers, especially for the

Particle Swarm optimiser, but less so for the Nelder–Mead opti-
miser. We still see a bias in the estimates of the recombination
rate, but now also an slight upwards bias in the estimates of the
split time (the time where gene flow finally ends). This was not
obvious in our previous results (Mailund et al., 2012) because of
the large variance in the optimiser we used there.

3.3. Multi-epochs isolation with initial migration models

For a more complex model we consider an extension of the IIM
model not previously described. This model allows multiple epochs
within the isolation period, the migration period and the ances-
tral population. Both coalescence rates and migration rates can
vary freely between epochs. In our experiments we always have
the same number of isolation, migration and ancestral epochs. The
parameters are the end of gene flow (split time), the beginning of
gene flow (migration time), one coalescence rate for each of the
isolation, migration and ancestral epochs, a symmetric migration
rate for each migration epoch and the recombination rate.

The first coalescence rate would be impossible to estimate with
just a pairwise alignment of one sequence from each population
since we observe no coalescence events there and so would have
no hidden Markov model states in that epoch (Mailund et al., 2011).
We solve this by constructing a composite likelihood from three
different hidden Markov models: one where our pairwise align-
ment is from two samples from the first population, one where the
alignment is from the second alignment and one with one sam-
ple from each population. These are all constructed with the same
CTMCs and only differ in the initial state, �, used for calculating the
joint genealogy probability. We run all three models in parallel with
the same parameters and add the log-likelihoods together to get a
combined likelihood.

Fig. 9 shows results for a model with three epochs, operating on
simulated sequences consisting of 2000 Mbp. This corresponds to
the IIM model except that there are now three coalescence rates
instead of one. Again we see a failure for the Nelder–Mead to
recover these parameters. The the last coalescence rate is not as
well estimated. The particle swarm optimiser performs the best
among three optimisers.

Figs. 10 and 11 show results for models with six and nine
epochs, respectively, operating on simulated sequences consisting
of 2000 Mbp. Results are similar to the three epochs model. We see
a failure to recover most of the parameters from the Nelder–Mead
and some suboptimal results for the last coalescence rates and
migration rates from the Genetic Algorithm. We see a better accu-
racy from the Particle Swarm. Even for the nine epochs model the
Particle Swarm estimates reasonably well. The earlier migration
rates are estimated better than last migration rate in both the six
epochs model and the nine epochs model.

Fig. 12 shows the effect of increasing the data size from 60 Mbp
to 2000 Gbp. For some of the parameters we see a reduction in the
estimation variance with more data, but less than one would have
hoped for a factor of more than three increase in alignment length.

4. Conclusions and future work

We have described a new framework for constructing coales-
cence hidden Markov models for demographic inference and
showed that using heuristic optimisation algorithms we can accu-
rately estimate parameters in a number of complex models. Using
our framework it is relatively easy to construct CoalHMMs for even
rather complex demographics, but a limiting factor is the accu-
rate parameter estimation. We have shown that the Nelder-Mead
algorithm we have previously used for estimation fails somewhat
when the number of parameters increases and that the heuristic
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optimisers do a better job. Good optimisation algorithms is still a
topic for future work.

In this paper we have focused on maximum likelihood estimates
of each parameter but not considered estimating error bars for
the estimates. These can be computed using bootstrap or jackknife
approaches but this comes at a cost in running time. Here, as well,
future work is needed.

Being able to work with larger sample sizes than four could
potentially improve the accuracy of parameter estimates as shown
in the MSMC (Schiffels and Durbin, 2014) model compared to the
PSMC model (Li and Durbin, 2011), and some of the approaches
we take in our framework generalises to more samples. The con-
struction of CTMCs for more samples is immediately possible as
we have shown in previous work (Mailund et al., 2012), although
this approach will only scale to a small number of samples due to
the problem of dealing with very large state spaces for the CTMCs.
Automatically combining CTMCs for such cases in a similar way to
what we have presented here is more complex still and requires
more work.

Despite these limitations we believe that our new frame-
work will enable more complex models to be explored using the
CoalHMM methodology and that the ideas underlying its design
can be used for improved frameworks in the future.
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CoalHMM method #2

This manuscript summarizes my work on CoalHMM’s admixture modeling. I
implemented admixture CoalHMM to infer historical admixture events, and
I constructed multiple admixing demographics. Admixture CoalHMM not
only learns the admixture time but also the proportions of gene flow. Also
in this paper, I present a range of simulation evaluations, and I demonstrate
good inference accuracy under different demographics. I also show the effect
of admixture CoalHMM used on wrongly modeled demographics. Together,
I present admixture CoalHMM as a new tool to study historical admixture
events.
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Introduction

Admixture and hybridisation events form new populations or species by mixing two or more source
populations. Recent studies have shown these events to be common in various species, including bears [1–
4], equids [5, 6], and hominins [7–11]. To understand the genetic relationship between populations and
closely related species, gene flow and admixture events cannot be ignored, yet the tools we have for
exploring and validating relationships with admixture and gene-flow are still limited.

Background

A wealth of methods exists for inferring phylogenetic tree relationships, and in recent years several
approaches have been developed for testing the presence of gene flow, inferring the rate of gene flow
between populations or inferring the admixture proportions between source populations and admixed
populations, and dating admixture events. For a recent review we refer to Sousa & Hey [12].

These methods vary in the data they use and the parameters they estimate. A number of methods
use the drift between populations—the random changes in allele frequencies that occur over time as
a population evolves—to infer the relationship between populations and to detect when simple tree
relationships cannot explain the data and gene-flow must have been present. The D statistics and the
f3 and f4 statistics, originally developed to detect archaic admixture in human populations [13, 14]
exploit correlations between allele frequencies in three or four populations to detect deviations from tree
relationships. From five populations, the ratio of two f4 statistics can infer the admixture proportions of
an admixed population—when the topology of the population fits a specific pattern.

The Treemix method [15] uses correlations in allele frequencies to fit data to trees extended with gene-
flow edges, and the ∂a∂i method [16] uses joint allele frequency patterns to infer parameters of a specified
demographic scenario and test goodness-of-fit of the scenario. Similarly, the qpGraph method [14] fits
drift parameters in an admixture graph to test the goodness-of-fit for a proposed relationship between
populations.

Drift-based methods measures divergence in terms of changes in allele frequencies, a time measure
that depends on the effective population size as well as time. Effective population sizes will vary between
independent branches in an admixture graph, and time is thus not moving at the same speed in different
parts of the graph. Because of this they cannot directly be used to infer the timing of events such
as population splits and admixture events. For dating admixture events, linkage disequilibrium (LD)
can be used. Admixture between two diverged populations introduces LD in the admixed population
and this LD breaks down over time. By comparing the LD in an admixed population with that of its
source populations it is possible to infer the number of generations since the admixture event, a property
exploited by the Rolloff [14] and ALDER [17] methods.

The patterns of mutations between genomes from two diverged populations also holds information
about the demographics that lead to the two populations, and the identity-by-state method of Harris &
Nielsen [18] uses this to fit the distribution of distances between variable sites to a demographic model.
Since this approach is based on substitutions between two genomes, the time between events can be
worked out, assuming a molecular clock, and with a calibrated molecular clock the events can be dated.

Also assuming a molecular clock, the number of mutations between two haplotypes that have not
undergone recombination is proportional to the time since their divergence. From a large number of
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haplotypes, the coalescence density between two or more populations can be worked out, and since this
density depends on the demographics, the demographics can be inferred. The so-called isolation-with-
migration model [19,20] exploits this by integrating over genealogies using the Markov-chain Monte Carlo
method. When only small sample sizes are considered—and the large number of haplotypes are obtained
by using haplotypes spread over entire genomes—the coalescence densities can be analytically derived and
fitted to the data [21–23]. More sophisticated sampling methods based on this, such as GPhoCS [24],
exploits this to infer rates of gene-flow within a multi-population topology.

To exploit whole-genome data recombination must be explicitly modelled. The computational com-
plexity of modelling genealogies with recombination prohibits this unless approximations are used. A
framework based on assuming a Markov relationship between genealogies along a sequence alignment [25,
26] has enabled a new class of inference methods: coalescence hidden Markov models or CoalH-
MMs [27–33]. Once such methods, the MSMC [34]—while not explicitly modelling gene flow—reveals
gene flow patterns from comparing the rate of coalescences within and between populations over time.
The diCal method [30] combines a CoalHMM with a sequential sampling approach to infer gene-flow
between diverging populations, and in earlier work we have developed a CoalHMM for an isolation-
with-initial-migration model [35] to infer the presence of gene flow and estimate the extend in time this
gene-flow took place after an initial population split.

In this paper we develop a coalescence hidden Markov model for inferring parameters for admixture
events. By tracing lineages in an admixed population and its source populations back in time, and
estimating the coalescence times of those lineages, we can infer the split time between the source popu-
lations, the time of admixture, and the admixture proportions. We validate the method using simulated
sequences and apply the method to a number of polar bear and brown bear genomes to infer the complex
population history of these bear species.

Results

Modelling admixture as a coalescent hidden Markov model

Samples from a species undergoing recombination are genealogically connected through an ancestral
recombination graph capturing where—along the genome and back in time—the samples experienced
recombination events and where they found their most recent common ancestors. This graph naturally
defines a set of local genealogies: for each point along the genome the samples are connected in a tree
genealogy; between recombination points the tree genealogy remains the same and at recombination
points the trees before and after the recombination point are potentially different.

Coalescent hidden Markov models approximate the process in which local genealogies change along
the genome. The genealogies are unobserved, but can be inferred from a sequence alignment of the
samples, and are assumed to change along the genome as a Markov process. To use standard hidden
Markov model inference algorithms the state space of this process must be finite, so time is discretised
to get a finite set of possible tree genealogies. The size of the state space, however, is still at least
as large as the number of possible tree topologies, which grows super-exponentially in the number of
samples, so explicitly modelling all tree topologies is only feasible with small sample sizes. The smallest
meaningful sample size is of course pairs of samples, where the local genealogy is equivalent to the local
time to the most recent ancestor, TMRCA. The TMRCA of a pair of samples varies along the genome, and
both the distribution of values it takes and patterns of changes along the genome are determined by the
demographic history of the the samples.

We have constructed a coalescent hidden Markov model that specifies the changes of the TMRCA

along a genome between a pair of samples as a function of population divergence times and admixture
proportions between populations. The model considers three populations: one admixed population and
two populations related to the populations that created the admixed population. For any pair of samples,
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Figure 1. Admixture graph. The graph shows the relationship between three extant populations,
A, B, and C. Population C originated as a mixture of two populations, AC ′ and BC ′, related to
ancestral populations of A and B—AC and BC, respectively—that in the past split from a common
ancestral population ABC.

either taken from the same population or from two different populations, we use a continuous time Markov
model to compute how the TMRCA will vary along the genome. Given samples from each population,
each pair will be informative about a subset of the parameters in the admixture graph and we combine
all pairs of samples in a composite likelihood function to estimate parameters.

Consider Fig. 1. The figure shows the relationship between three extant populations, A, B, and C,
where C is admixed between two populations related to populations A and B. Lineages from the three
populations, traced back in time, goes through different ancestral populations. Lineages from A will
go through A then AC—the population ancestral to both A and C—and then ABC—the population
ancestral to all populations. Similarly, lineages from population B will go through B, then AC, and then
ABC. Lineages from population C, however, can take two different paths. They will first go through C
and at the admixture time they will either go left, with probability α, and go through AC ′ and then AC
until finally going to ABC, or they will turn right, with probability 1 − α, and go through BC ′, then
AB, and finally ABC.

Two lineages from population A can coalesce in any of populations A, AC, and ABC, at a rate that
is inversely proportional to the effective population size in those populations. Similarly for two lineages
from population B that can coalesce in populations B, BC, and ABC. Two lineages from population C
can coalesce within populations C, AC ′, AC, and ABC with probability α2; within populations C, BC ′,
BC and ABC with probability (1−α)2, or within only C and ABC with probability 2α(1−α). For one
lineage from population A and one lineage from population C these can coalesce within populations AC
and ABC with probability α and within only population ABC with probability (1 − α), and similarly
for one lineage from population B and one from population C these can coalesce within populations AC
and ABC with probability (1− α) or only within population ABC with probability α.

We model how the TMRCA changes along the genome by specifying a continuous time Markov model
that tracks two samples back in time through the admixture graph. For each sample we keep track of
two neighbouring nucleotides and allow the left and right nucleotide of a sample to recombine apart,
splitting a lineage into two, or coalesce, merging two lineages into one. When lineages from two samples
coalesce one or two of the nucleotides will find their most recent common ancestor. By summing over
all possible ancestries of the two samples in this way we obtain a joint probability of when the left and
right nucleotides of our samples find their most recent common ancestor—the joint probability of the left
and right TMRCA—from which the transition probabilities of the coalescent hidden Markov models can
be obtained.

Depending on which populations the two samples are from we get different transition matrices for
changes in TMRCA. We thus get different hidden Markov models for each choice of samples. All are,
however, determined by the same set of parameters. By multiplying the likelihood we get for each hidden
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Markov model for each choice of pairs of samples we get a composite likelihood we can use to estimate
the parameters of the admixture graph.

The model parameters are: the time of the admixture, τadmix, the divergence time between population
A and C, τAC , the divergence time between population B and C, τBC , the divergence time between
population A and B, τABC , the admixture proportion, α, and the recombination and coalescence rates,
R and C, that we for simplicity assume are constant across the admixture graph and along the sequence.

A composite likelihood combination of pairwise hidden Markov models

We apply the composite likelihood approach to deal with more than two samples. The more samples we
have from each population the more HMMs we can construct and incorporate into the admixture model.
We refer to Supplemental Text S1 for details on how each HMM is constructed and which are combined
for each model.

Table 1 summarises the admixture models we use in the simulation study. The models differ depending
on the samples we have available. We use Model #1 when we have access to only the admixed population.
In this case we make inference from two chromosomes within population C and have a single hidden
Markov model.

When we have genetic data for the admixed population and one of the source populations, we can
apply Model #2. Here we assume we have two chromosomes from each population and we construct two
hidden Markov models running on two samples from the same population – the first is the same as Model
#1 and the second is similar except the two samples are from population A rather than C – and a third
model running one one genome from either population.

When we have data from all three populations, we would use the full model. With data from all
three populations we consider three different ways of exploiting this data: For Model #3.1, we have only
one sample per population. In this case we can construct three HMMs for pairwise alignments of the
three samples, one from each population. For Model #3.2, we have two samples per population, and we
construct one HMM for each of the six types of HMMs. For Model #3.3 we construct fifteen HMMs for
all pairwise alignments of six samples, two from each population.

Estimation accuracy

We simulated data using the program fastsimcoal2 [36, 37]. We first simulated two different scenarios,
differing in the time since the population divergence and admixture events: An “Ancient” scenario
(τABC = 0.002, τAC = 0.0016, τBC = 0.0012, τadmix = 0.0002) and a “Recent” (τABC = 0.0004,
τAC = 0.0002, τBC = 0.00008, τadmix = 0.00002), both with coalescence rate C = 3125 and recombination
rate R = 0.5. For both scenarios we varied the admixture proportions α from 10% to 90% in steps of
10%.

The estimated parameters for the two scenarios are shown in Fig. 2 where (A) show the estimates of
the timing of events and the two rates and (B) shows the estimates of admixture proportions. The solid
gray lines show the simulated parameter values and for the admixture proportions the solid lines shows
the simulated α values while the dashed lines show 1−α. Since Model #1 cannot estimate τAC and τBC
and Model #2 cannot estimate τBC , estimates are naturally not shown for these parameter for those two
models.

We generally recover the time parameters well, although τAC and τBC are slightly underestimated
and τABC is slightly overestimated for Model #1 and Model #2. We recover the coalescence rate well
except for Model #1 in the Recent setup and we underestimate the recombination rate R. The latter is
a general problem with our coalescent hidden Markov model approach also seen in earlier models [35,38].
Model #3.1, which has fewer hidden Markov models in its composite likelihood and has a larger variance
in its estimates than the other models, especially when estimating the admixture time.
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Model

Population
A B C Samples

#1
A C B

#3-1

#3-2

#3-3

#2
A C B

A C B

A C B

A C B

Table 1. Admixture models. The table gives an overview of the admixture models used in our
simulation study. These models differ depending on the availability of data. We use Model #1 when we
have access to only C. When we have genetic data for C and one of the source populations, we can
apply Model #2. When we have data from A, B and C, we would use the full model. In this study, we
experiment with three configurations for the full model. For Model #3.1, we have only one sample per
population. In this case we can construct three HMMs for pairwise alignments of the three samples, one
from each population. For Model #3.2, we have two samples per population, and we construct one
HMM for each of the six types of HMMs. For Model #3.3 we construct fifteen HMMs for all pairwise
alignments of six samples, two from each population (here the filled and hollow versions of the same
shape denote that we treat samples from the same population as distinct when forming pairwise
combinations, see Supplemental Text S1).
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Figure 2. Parameter estimation accuracy. (A) Accuracy of parameter estimation for time
parameters, the coalescence rate and the recombination rate. (B) Accuracy of estimation of admixture
proportions.
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We generally also recover the admixture proportions well, except for Model #1 and Model #2 where
the model is just as likely to estimate 1 − α as we are to estimate α. This is because the likelihood for
these models, where we only have samples from the admixed population (Model #1) or the admixed
population and one of the source populations (Model #2) is symmetric in this parameter. The models
with samples from all three populations do not have this problem and recover the admixture parameter
very well.

Impact of varying the effective population size

The coalescence rate parameter captures the effective population size in the model since the effective
population size of a population is inversely proportional to the rate at which lineages find a common
ancestor, i.e. the coalescence rate. To examine the impact of the effective population size on parameter
estimating we simulated data with different coalescence rates while keeping the other parameters fixed.
Results are shown in Fig. 3.

The estimated parameters for the same two scenarios are shown in Fig. 3 where (A) show the estimates
of the timing of events and the two rates and (B) shows the estimates of admixture proportions. Generally,
we see a better estimation accuracy in the ancient scenario than in the recent scenario. This is the case
for all timing parameters, coalescent rate, recombination rate, and admixture proportions. We also see
the situation where α and 1−α are both estimated. These observations are the same as the results shown
in Fig 2.

With increasing coalescent rates, corresponding to decreasing effective population sizes, we do not see
much effect on the estimation accuracy for admixture proportions shown in (B). Overall, we recover the
admixture proportions just as well with the exception of Model #1 and Model #2 in the recent scenario,
where high coalescent rates seem to help the inference, but we would not rely on these two models for
admixture proportions because of the aformentioned issue that these two models do not distinguish gene
flow directions.

Effect of split times relative to the admixture time

Fig. 4 shows the effect of varying the split time between the admixed population and one of the two
source populations. When this split is close to the admixture event, we observe good estimates. We
observe poor estimates in admixture-related parameters when this split is far back in time.

Admixture CoalHMM model fails to recover admixture proportions when the split is distant. This
is caused by the big difference in time between the two key events, the admixture event and the split
event related to the admixed population. When this happens the extant source population becomes much
different from its ancestral population at the time of the split. The extant source population, therefore,
does a poor job reflecting what truly happened during the admixture event. The population that is
directly responsible for the admixing is a distant and ancient sbling of the extant source population.

Effect of modeling outgroup as a source population

Fig. 5 shows the effect of applying the admixture model with two source populations in a demographic
scenario where one of the source populations to be inferred is actually an outgroup, and the admixture
event happens between two ancestral siblings of one source population instead of involving two extant
source populations. When the split times of the source population and its ancestral siblings are close to
the admixture event, we observe an estimate of zero for the admixture proportion from one direction and
one from the other direction. We also observe an overall inaccurate estimate of the admixture-related
parameters because this is a model misspecification case where the model used here fails to capture the
true demography.
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Figure 4. Effect of split times relative to the admixture time. Accuracy of parameter
estimation with a range of split times, from early back in time to recent, close to the admixture event.
We observe good estimates when the split is close to the admixture event. We observe poor estimates in
admixture-related parameters when this split is far back in time. The first column of estimates for
admixture proportions demonstrates this situation with clarity.
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Figure 5. Effect of outgroup modeled as a source population. Accuracy of parameter
estimation with a range of split times when an outgroup is mistakenly modeled as a source population.
We observe a failure in recovering parameters related to the admixture event due to the wrong modeling,
but the estimates accurately reflect reality by attributing gene flow to just one source population.
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Admixture CoalHMM attributed all gene flow to one source population. This is an accurate reflection
of the demography because the outgroup contributes zero percent in the admixture event while the one
true source population contributes all of the gene flow.

Effect of continuous gene flow

In this section, we demonstrate the effect of applying the admixture model with two source populations
on three types of demographic scenarios where continuous gene flow is involved among some of the extant
or ancestral populations. The admixture model does not accurately model any of the these demographics,
but we observe the effect when we apply a misspecified admixture model.

Effect of continuous gene flow in a three population isolation and migration scenario Fig. 6
shows the effect of applying the admixture model with two source populations in a scenario where the
true demographic does not contain an admixture event. Instead, it is a three population isolation and
migration model where we allow migration between the outgroup and one of the two closely related
populations. When removing migration from the demography, the admixture model records false gene
flow from the closely related population. With an increasing migration rate, the admixture model records
an increasing admixture proportion from the outgroup.

Admixture CoalHMM attributes all gene flow to the closes-related population when migration is low.
This agrees with the demographics in the best way if admixing is the only form of gene flow in the model.
With an increasing migration between the middle population with the outgroup, the opposite best reflects
the demographics.

Effect of recent gene flow between the admixed population and the extant source popu-
lations Fig. 7 shows the effect of applying the admixture model with two source populations in an
admixture scenario where constant gene flows exist between the admixed population and the two source
populations. When the rate of gene flow is zero, the admixture model accurately report the demographic
parameters. When the rate of gene flow increases, we see a steady decline in the estimation accuracy for
all parameters. The split times between the admixed population with the source populations are affected
most significantly. Continuous gene flow dramatically reduces time estimates, which lead to populations
with extremely recent splits.

Admixture CoalHMM does not model continuous gene flow, hence it attributes recent gene flow
entirely to the admixture event leading to a extremely recent estimate for the admixture time. The
recent migration also blurs the directions and quantities of gene flows from both directions leading to the
failure in estimating admixture proportions. Finally, when migration is not incorporated into the model,
the system compensates by producing recent splits and closely related extant populations.

Effect of distant gene flow between the two ancestral source populations Fig. 8 shows the
effect of applying the admixture model with two source populations in an admixture scenario where
constant gene flow exist between the two root ancestral populations after the root split but before the
splits related to the admixed population. We observe a decline in the estimation accuracy for admixture-
related parameters. Overall, this type of continuous gene flow has the smallest effect compared with the
cases described in Fig. 6 and Fig. 7.

Admixture CoalHMM considers accumulated coalescence from its modern samples backward in time.
Admixture-relevant parameters are affected most directly when the model fails to capture the demograph-
ics from the admixture event to current time. This is what we observed in Fig. 7. The simulated ancient
gene flow in this experiment, however, only influences the admixture-relevant parameters indirectly and
less significantly. As for the under estimation for the root splits, this is due to the ancient gene flow and
the same compensation mechanism as discussed in the previous section.



12

t1: 
t2: 
r:
mu:
pop size:
volume:

40,000 gens 
80,000 gens
1.0e-8 per gen
2.0e-8 per gen
12,000 samples
30     Mbp

migration rate: 1 - 0.0
2 - 2e-6
3 - 4e-6
4 - 6e-6
5 - 8e-6
5 - 2e-5

t1

t2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
median: 0.00020007

0

5

10

15

20

25

median: 0.00122308
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
0
2
4
6
8

10
12
14
16

0.008
0.000 0.001 0.002 0.003 0.004 0.005 0.006

median: 0.00068515

0
2
4
6
8

10
12

0.000 0.002 0.004 0.006 0.008
median: 0.00164269

0
2
4
6
8

10
12
14
16

0.0100.0 0.2 0.4 0.6 0.8 1.0
median: 0.034997465

0
2
4
6
8

10
12
14

1

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
median: 0.00011772

0
2
4
6
8

10
12
14
16
18

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
median: 0.000333555

0
2
4
6
8

10
12
14
16

0.000 0.001 0.002 0.003 0.004 0.005 0.006
median: 0.00067266

0
2
4
6
8

10
12
14
16

0.000 0.002 0.004 0.006 0.008 0.010
median: 0.00153839

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
median: 0.08599251

0
2
4
6
8

10
12
14

2

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
median: 7.2035e-05

0

5

10

15

20

25

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
median: 0.00014434

0
2
4
6
8

10
12
14
16
18

0.000 0.001 0.002 0.003 0.004 0.005 0.006
median: 0.00066261

0
2
4
6
8

10
12
14
16
18

0.000 0.002 0.004 0.006 0.008 0.010
median: 0.001377735

0
2
4
6
8

10
12
14
16
18

0.0 0.2 0.4 0.6 0.8 1.0
median: 0.16447113

0
2
4
6
8

10
12
14
16
18

3

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
median: 0.000116765

0
2
4
6
8

10
12

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
median: 0.000251595

0
2
4
6
8

10
12
14
16
18

0.000 0.001 0.002 0.003 0.004 0.005 0.006
median: 0.000647315

0
2
4
6
8

10
12
14

0.000 0.002 0.004 0.006 0.008 0.010
median: 0.001387935

0
2
4
6
8

10
12
14

0.0 0.2 0.4 0.6 0.8 1.0
median: 0.2071725

0
2
4
6
8

10
12
14
16
18

4

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
median: 0.000114255

0
2
4
6
8

10
12
14
16

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
median: 0.00021841

0
2
4
6
8

10
12
14
16
18

0.000 0.001 0.002 0.003 0.004 0.005 0.006
median: 0.00063988

0

5

10

15

20

0.000 0.002 0.004 0.006 0.008 0.010
median: 0.00124539

0
2
4
6
8

10
12
14
16
18

0.0 0.2 0.4 0.6 0.8 1.0
median: 0.30547159

0

5

10

15

20

25

5

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
median: 6.5815e-05

0

5

10

15

20

25

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
median: 0.00012937

0
2
4
6
8

10
12
14
16
18

0.000 0.001 0.002 0.003 0.004 0.005 0.006
median: 0.000582675

0
2
4
6
8

10
12
14

0.000 0.002 0.004 0.006 0.008 0.010
median: 0.000904145

0
2
4
6
8

10
12
14

0.0 0.2 0.4 0.6 0.8 1.0
median: 0.757891315

0

5

10

15

20

25

6

Admixture proportion Admix time first split second split root split

Simulated

Estimated under Model #3-2

Figure 6. Effect of continuous gene flow, type 1. Accuracy of parameter estimation when
applying the admixture model with two source populations in a scenario where the true demography is
a three population isolation and migration model allowing migration between the outgroup and one of
the two closely related populations. The admixture model records false gene flow from the closely
related population, and this direction of gene flow dominates when migration rate is low. The
admixture model records an increasing admixture proportion from the outgroup when we increase the
migration rate in the simulated data.
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Figure 7. Effect of continuous gene flow, type 2. Accuracy of parameter estimation when a
continuous gene flow exist between extant source populations and the admixed population. We observe
accurate estimates when the rate of migration is zero, and we observe a failure in recovering any
parameters when the migration rate increases. Specifically, all time estimates become extremely short
due to the continuous gene flow in the simulated data.
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Figure 8. Effect of continuous gene flow, type 3. Accuracy of parameter estimation when
continuous gene flow exists between the two root ancestral populations. This corresponds to the time
after the root split but before the splits related to the admixed population. We observe a decline in
estimation accuracy, but overall, compared with the cases shown in Fig. 6 and Fig. 7, this type of
continuous gene flow has the smallest effect on admixture related inference.

Real data analysis

We applied the admixture CoalHMM framework of model construction and estimation to real genomic
data. We obtained full genomes for various bear samples. Fig. 9 shows estimates from models that
consider PB as an admixed population that received gene flow from a sibling population of BB and
ABC as well as gene flow from a population ancestral to both BB and ABC. We consider five bear trios,
PB4-BB020-BLK, PB4-ABC1-BLK, PB4-ABC2-BLK, PB4-BB020-ABC1, and PB4-BB020-ABC2.

Discussion

We have developed a coalescent hidden Markov model that enables us to estimate demographic parameters
in scenarios where one population is the descendant from an admixture event, and we may or may not have
samples from all extant populations. Through simulations we have shown that we recover most parameters
well, with a noticeable exception being the recombination rate which we substantially underestimate, an
effect we have also seen in our previous coalescence hidden Markov models [35,38]. Through simulations,
we have also shown the effect of several common model mis-specifications, all of which fail to recover the
mis-specified model parameters in expected manners.

Materials and Methods

Coalescence hidden Markov models infer demographic parameters from sequence alignments by modelling
how the ancestry of the sequences vary along the alignment and how the sequences evolved over those
ancestries. Conditional on the genealogies, the probability of the observed sequences can be computed
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Figure 9. Bear admixture analysis and model comparison We perform 100 bootstrap
executions for each bear trio. The two models consider PB as an admixed population which received
gene flow from a sibling population of BB and ABC as well as gene flow from a population ancestral to
both BB and ABC.
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using standard algorithms [27, 35, 38, 39]. The crux of constructing a CoalHMM is thus specifying the
probability of moving from one genealogy to the next as we scan along an alignment.

We take the approach, developed in earlier papers [32, 35, 38] of specifying the joint probability of
two neighbouring genealogies using a continuous time Markov Chain (CTMC), similar to Simonsen &
Churchill [40] and Slatkin & Pollack [41]. Let JΘ(`, r) denote the joint probability of seeing a “left” ge-
nealogy ` and “right” genealogy r, given demographic parameters Θ, and let PΘ(`) denote the probability
of seeing the genealogy `, then the transition probability for the hidden Markov model TΘ(r | `) is given
by TΘ(r | `) = JΘ(`, r) / PΘ(`). We discretise time to obtain a finite set of possible genealogies and can
then compute PΘ(`) as PΘ(`) =

∑
r JΘ(`, r), so for the full specification of the hidden Markov model we

only need to specify JΘ(`, r). This probability is computed by explicitly considering all possible histories
that produces genealogies ` and r.

Tracing the ancestry of lineages using continuous time Markov chains

To model the ancestry of genealogies ` and r we construct a CTMC that tracks all ancestral states that
our samples can go through. We start our system with two samples, either from the same population or
from two different populations, and trace their lineages back in time. Initially, our samples consist of two
nucleotides sitting on the same genome—the left and right nucleotide is linked—and back in time these
nucleotides can be separated through recombination events and re-linked through coalescence events.
At the admixture event, the lineages in the admixed population can jump to the source populations,
independently, and when two or more lineages are in the same population they can coalesce into common
ancestors. The time at which common ancestors are found defines the genealogies ` and r while all other
events are integrated out using the CTMC framework.

We construct a CTMC to compute probabilities for all ancestries similar to our earlier work [42]:
We specify a transition system that tracks all the possible events that lineages can undergo and assign
rates to these events. The states of this transition system consists of a number of ancestral lineages,
each lineage specified as a triplet, (p, `, r), where p denotes the population the lineage is in, ` the set of
samples that the lineage is ancestral to at the given time at the left nucleotide, and r the set of samples
the lineage is ancestral to at the given time in the right nucleotide.

At any given time, a lineage (p, `, r) can undergo recombination, at rate R, and split into two lineages:
(p, `, ∅) and (p, ∅, r). Two lineages, in the same population, p, can coalesce, merging (p, `1, r1) and
(p, `2, r2) into a single ancestral lineage (p, `1 ∪ `2, r1 ∪ r2), at rate Cp (coalescence rates depend on
the population since we allow the effective population size to vary between populations). We explicitly
enumerate all possible states—the number of different ancestral lineages possible—and construct a rate
matrix, Q, for the CTMC with off-diagonal values given by the recombination and coalescence rates and
the diagonal values given by Qi,i = −∑j 6=iQi,j . From this rate matrix, the transition probabilities
of being in state y at time t, given we were in state x at time s is given by [exp (Q(t− s))]x,y where
exp (Q(t− s)) is the matrix exponentiation [43].

Different time periods will have different state spaces: At the time before the admixture event, samples
from each population will be confined to their initial population while after the admixture event lineages
from the admixed population will have moved to one of the source populations and different states—
reflecting that different coalescence events are now possible—will be reachable. We model this by having
different Q matrices at different time periods and having projection matrices, η, when moving from one
time period to the next. The responsibility of the η matrices is to map lineages in the admixed population
to the source populations, with probabilities given by the admixture proportions, and to map lineages
from the separate source populations into the ancestral population at the time of the initial split between
source populations.

If we move from one state space, given by Q(1), at time τ , to another state space, given by Q(2),
then the probability of going from state x at time s < τ to state y > τ will be given by the transition
probability from time s to τ , then the projection matrix, η, and then the transition probability for going
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from time τ to time t:
[
exp

(
Q(1)(τ − s)

)
× η × exp

(
Q(2)(t− τ)

)]
x,y

. When more than two time periods

are involved, several projection matrices must be used, but the transition probabilities are computed by
combining several such matrix multiplications.

The mapping from one state space to another can be done by mapping individual lineages. In the
simplest case, there is a one-to-one mapping between lineages before the change in state space to after the
change in state space: λ : (p, `, r) 7→ (p′, `′, r′). This is the case when two populations, p1 and p2, merges
into an ancestral population pA back in time, where all lineages (pi, `, r) then maps to (pA, `, r) for i = 1, 2.
Such a lineage-mapping induces a state-mapping σλ that maps states x to σλ(x) = {λ(l) | l ∈ x }. This
defines the η mapping by

ηx,y =

{
1 if y = σλ(x)

0 otherwise
.

When the change in state space is caused by an admixture event we still map individual lineages, but
in this case each lineage can map to one or more different lineages with different probabilities. When
population C is admixed from populations A and B with admixture proportions α and β = 1−α a lineage
(C, `, r) maps to lineage (A, `, r) with probability α and to lineage (B, `, r) with probability β. In this
case, the lineage map gives us a set for each lineage λ : (C, `, r) 7→ { [α, (A, `, r)] , [β, (B, `, r)] }. For the
elements in the image of λ let p denote the probability, p([α, (p, `, r)]) = α and let l denote the lineage,
l([α, (p, `, r)]) = (p, `, r). For a state, x, we have a set of potential states with corresponding probabilities:
X = { z | z ∈ λ(l), l ∈ x }. The state corresponding to X is { l(z) |z ∈ y } and the probability of moving
to this state is

∏
z∈y p(z), so

ηx,y =
∏

z∈X
p(z)

where y = { l(z) |z ∈ X } and X = { z | z ∈ λ(l), l ∈ x }.

Computing joint probabilities from two-locus CTMCs

The CTMC framework described above lets us assign probabilities for being in any given ancestral state
at any given time, but for constructing our CoalHMM we must project this to the joint probability of
seeing two genealogies ` and r.

To use the hidden Markov model framework we need a finite set of possible genealogies, so the first
step is to discretise time. We take a simple approach and place breakpoints between intervals uniformly
when a demographic period has both a start point and and end point, while for the last period—where
we have a single ancestral population—we use an exponential distribution as in Mailund et al. [38].

Given breakpoints 0 = τ0, τ1, . . . , τN = ∞ and corresponding state transition probability matrices
P (i) = exp

(
Q(i)(τi+1 − τi)

)
× η(i)—where η(i) is the identity matrix unless Q(i) and Q(i+1) has dif-

ferent state spaces—the probability of being in state x at τi and in state y at time τj , for j > i, is(
P (i) × · · · × P (j−1)

)
x,y

. Or, letting P [i:j] = P (i) × · · · × P (j−1): P [i:j ]x,y.

For a sample of size two, the joint probability of genealogies ` and r are given by the coalescence
time on the left and on the right, which means the probability that the left nucleotides coalesce in time
interval i and the right nucleotides coalesce in time interval j: JΘ(` = i, r = j). We denote by B(i)

the states in the state space for the time period [τi : τi+1] where neither left nor right nucleotides have
found a common ancestor (the pair of ancestral configurations ({{1}, {2}} , {{1}, {2}})). Similarly, we
let L(i) denote the states where the left nucleotides, but not the right, have found a common ancestor—
({{1, 2}} , {{1}, {2}})— R(i) denote the states where the right nucleotides, but not the left, have found
a common ancestor—({{1}, {2}} , {{1, 2}})—and E(i) the states where both left and right nucleotides
have found a common ancestor—({{1, 2}} , {{1, 2}})—see Mailund et al. [38]. Then

JΘ(` = i, r = i) =
∑

b∈B(i−1)

∑

e∈E(i)

P
[0:i]
ι,b × P

[i:i+1]
b,e
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where ι denotes the initial state—the state where both samples have left and right nucleotides linked.
The probability of JΘ(` = i, r = j) for j > i is given by

JΘ(` = i, r = j) =
∑

b∈B(i−1)

∑

l1 ∈L(i+1)

∑

l2 ∈L(j−1)

∑

e∈E(i)

P
[0:i]
ι,b × P

[i:i+1]
b,l1

× P [i+1:j−1]
l1,l2

× P [i:i+1]
b,e

and by symmetry JΘ(` = j, r = i) = JΘ(` = i, r = j). (Special cases, where some of the intervals are
empty (e.g. i+ 1 = j− 1) are handled by having the relevant matrices (e.g. P [i+1:j−1]) being the identity
matrix).

Composing demographic scenarios

A general admixture scenario was shown in Figure 1 that shows population C as admixed from two
populations related to populations A and B. The admixture proportions are α from the population
related to A and β = 1 − α from the population related to B. Time τadmix is when the admixture
happened and times τAC and τBC are when the source populations find shared ancestral populations
with A and B respectively—the order of τAC and τBC can change depending on which split happened
first—and τadmix is the time where A and B find a shared ancestral population.

To compute the joint probability of left and right genealogies we compose CTMCs based on this
graph. From time zero until τadmix we model three populations independently. At time τadmix lineages
from population C splits to two different and independent populations with probabilities α and β through
an η matrix. Between τadmix and τAC there are four independent populations. At time τAC lineages from
population A and the one source population merge into an ancestral population and at time τBC lineages
in B and the other source population maps into the second ancestral population and finally at time τABC
all lineages map into a shared ancestral population.

There are five different CTMCs in use to model this scenario: one for the time period [0, τadmix),
one for [τadmix, τAC), one for [τAC , τBC), one for [τBC , τABC), and a final one for [τABC ,∞). The first η
mapping matrix involves admixture probabilities and the rest simply maps lineages one-to-one.

Cases where we do not have samples from populations A or B are modelled simply by removing those
branches in the graph, and the corresponding states in the CTMCs. When the A or B populations are
the actual source populations, we can remove the branches with isolated populations after the admixture
event and map lineages directly into the ancestral lineages of those populations, simplifying the CTMCs.

Building a hidden Markov model from joint probabilities

A hidden Markov model is fully specified through two matrices and one vector. The transition matrix, T ,
captures the probabilities of moving from one hidden state to the next as we move along a sequence; the
emission matrix, E, captures the probability of seeing an observed state conditional on a hidden state;
and the initial probability vector, π, captures the probability of starting the hidden Markov model in a
given state [44].

For coalescent hidden Markov models, the hidden states are underlying genealogies and the observable
states are alignment columns. The emission probabilities, the probability of seeing a given alignment
column given a given underlying genealogy, can be computed using standard algorithms. The transition
matrix is given by the transition probabilities computed from the joint probabilities, as described above,
T`,r = TΘ(r | `) = JΘ(`, r)/PΘ(`) where PΘ(`) =

∑
r JΘ(`, r), and the initial probability vector is simply

π` = PΘ(`).

Parameter estimation

Given the hidden Markov model parameters, T , E, and π, the likelihood of seeing a sequence of observed
states—the sequence alignment in the case of coalescence hidden Markov models—can be computed by
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summing over all possible sequences of hidden states. This sum can be efficiently computed using dynamic
programming via the so-called Forward algorithm. In its basic form, the Forward algorithm sums over
all states for each position along the sequence, but repetitions in the sequence can be exploited to speed
up this computation further, reusing computations when the sequence repeats. In our implementation we
use the ZipHMM algorithm [45] that previous experiments have shown is gives us a speedup in computing
the likelihood of one or two orders of magnitude when analysing full genome alignments.

We apply a particle swarm optimiser, PSO, to infer the parameters. In PSO, we represent the position
of the ith particle as xi = (xi,1, xi,2, . . . , xi,D) and its velocity as vi = (vi,1, vi,2, . . . , vi,D), where D is
the number of dimensions in the parameter space. We represent the particle’s previous position with its
best fitness as pi = (pi,1, pi,2, . . . , pi,D). During each iteration, the algorithm adjusts the velocity v and
position x according to the following equations, where rp and rg are two random values between zero and
one, and φp and φg are two positive constants representing cognitive and social influences.

v′i,d ← ω · vi,d + φp · rp · (pi,d − xi,d) + φg · rg · (pg,d − xi,d).

x′i,d ← xi,d + vi,d.

Each model parameter corresponds to a dimension in the solution space. The optimiser initialises
particle velocities from uniform random values within a range of 2% of the predetermined range for each
parameter. During each iteration, we update the velocities of each particle using coefficients determined
from trial and error. For the inertial coefficient, we use ω = 0.9; i.e. a 90% decay in velocity if the particle
is not affected by other forces. For the cognitive and social coefficients, we use φp = 0.3 and φg = 0.1,
respectively. Larger values for φ had the tendency to accelerate the particles beyond acceptable ranges.
We found population sizes greater than 100 did not significantly improve the performance, but they did
dramatically increase the time required for the swarm to converge.

Simulation setup

We use the program fastsimcoal2 [36,37] for continuous-time sequential Markovian coalescent simulations.
Fastsimcoal2 handles complex evolutionary scenarios. We simulate demographics involving splitting
and fusing of populations, admixture events, changes in migration matrices, etc. From the simulated
polymorphic sites of a pairwise sequence, we calculate the HMM observations, which are 0, 1, and 2, for
being the same, different, and missing.
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Ohana’s admixture and
population tree

This paper unfolds the theory behind programs qpas, cpax and nemeco
implemented in Ohana. I show Ohana’s strong inference power by showing
inference results with simulated and real data. This paper explores model
limitations. I also present some software comparisons to show that Ohana’s
admixture analysis is faster and more accurate than the current state-of-the-
art tool in admixture analysis. Ohana introduces a new method to infer
population trees, and it should be of use to other researchers as an additional
component to their structure-style analysis.
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Abstract

Motivation: Structure methods are highly used population genetic methods for classifying individuals in
a sample fractionally into discrete ancestry components. Contribution: We introduce a new optimization
algorithm of the classical Structure model in a maximum likelihood framework. Using analyses of real
data we show that the new optimization algorithm finds higher likelihood values than the state-of-the-art
method in the same computational time. We also present a new method for estimating population trees
from ancestry components using a Gaussian approximation. Using coalescence simulations modeling
populations evolving in a tree-like fashion, we explore the adequacy of the Structure model and the
Gaussian assumption for identifying ancestry components correctly and for inferring the correct tree. In
most cases, ancestry components are inferred correctly, although sample sizes and times since admixture
can influence the inferences. Similarly, the popular Gaussian approximation tends to perform poorly when
branch lengths are long, although the tree topology is correctly inferred in all scenarios explored. The
new methods are implemented together with appropriate visualization tools in the computer package
Ohana. Availability: Ohana is publicly available at https://github.com/jade-cheng/ohana. Besides its
source code and installation instructions, we also provide example workflows in the project wiki site.
Contact: jade.cheng@birc.au.dk

1 Introduction
To quantify population structure, researchers often use methods based
on the Structure model (Pritchard et al., 2000). The basic assumption in
this model is that individuals belong to a set of K discrete groups, each
with unique allele frequencies and obeying Hardy-Weinberg Equilibrium,
although the latter assumption can be relaxed (Gao et al., 2007).
Furthermore, individuals are allowed to have fractional memberships
of each group. The groups are often termed ‘ancestry components’
and are sometimes interpreted to represent ancestral populations. This
interpretation may be correct in some scenarios, for example when
analyzing balanced samples of recently admixed individuals from
otherwise highly divergent groups. However, if basic model assumptions
are violated, for example if populations truly are not discrete units, the
interpretation is more unclear. Nonetheless, inferences under the Structure

model have proven highly popular for quantifying population genetic
variation and for exploring the basic structure and divisions of genetic
diversity in a sample.

STRUCTURE (Pritchard et al., 2000), FRAPPE (Tang et al., 2005),
and ADMIXTURE (Alexander et al., 2009) are arguably the three most
commonly used programs that apply the Structure model. STRUCTURE
uses a Bayesian approach and relies on a Markov Chain Monte Carlo
(MCMC) algorithm to sample jointly the posterior distribution of
allele frequencies and fractional group memberships. FRAPPE uses a
maximum likelihood approach and optimizes the likelihood for both
allele frequencies and fractional group memberships using an expectation-
maximization (EM) algorithm. ADMIXTURE uses the same model and
statistical framework as FRAPPE but uses a faster optimization algorithm.
ADMIXTURE executes a two-stage process, first taking a few fast
EM steps and then executing a sequential quadratic programming (QP)
algorithm. ADMIXTURE uses a pivoting algorithm to solve each QP

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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problem and applies a quasi-Newton acceleration to each iteration. This
acceleration does not respect parameter bounds. ADMIXTURE projects
an illegal update to the nearest feasible point, and the acceleration step
contributes only when it results in a better likelihood; otherwise the original
QP update is used.

The interpretation of parameter estimates under the Structure model is
somewhat contentious (Royal et al., 2010; Weiss and Long, 2009). It is not
clear exactly what the groups, or ancestry components, represent, but in
the most simple interpretation we can think of them as estimates of some
idealized ancestral populations. If a researcher has inferred the existence
of K ancestral populations and knows the fractional memberships of
each individual in these populations, a next question would be to explore
their evolutionary history. The estimated allele frequencies can provide
information about this.

The first approaches for using allele frequencies to estimate population
histories dates back to the seminal work by Edwards and Cavalli-Sforza
(Cavalli-Sforza et al., 1964, 1967). They used Gaussian models for the
joint distribution of allele frequencies of multiple populations to estimate
genetic distances and to infer population trees. The use of Gaussian
models to approximate genetic drift has recently had a resurgence after
the availability of large Single Nucleotide Polymorphism (SNP) data
sets. It is used in numerous methods and studies, including tests of
local adaptation (e.g., (Coop et al., 2010; Gunther et al., 2013)) and the
popular TREEMIX program developed by Pickrell et al. (2012). The basic
idea in these methods is that you can define the joint allele frequencies
among populations in terms of a Gaussian distribution with a covariance
matrix dictated by a tree (or admixture graph). Under the Gaussian model,
a tree corresponds to exactly one unique covariance matrix, and each
covariance matrix corresponds to at most one tree. Furthermore, the
likelihood function can be calculated very fast numerically without any
need for pruning. The assumption of a Gaussian model for the allele
frequencies corresponds to an assumption of a Brownian motion process
to model genetic drift instead of, say, a Wright-Fisher diffusion. For
small time intervals, the Brownian motion process can provide a close
approximation to the Wright-Fisher diffusion. However, for longer time
intervals, especially when the allele frequency is close to either of the
boundaries (0 and 1), the Brownian motion model is clearly not a very
accurate approximation to the Wright-Fisher diffusion. Nonetheless, the
Gaussian models provide useful frameworks for inferences because of the
distinct computational advantages.

A natural extension of the structure inference framework is to use
similar models on the inferred ancestry groups to explore their evolutionary
histories. A primary objective of this paper is to provide a computational
tool for doing just this and to examine the performance of the Gaussian
model in this context.

We present ‘Ohana’, a tool suite for inferring global ancestry,
population covariances, and constructing population trees using Gaussian
models. Ohana uses a maximum likelihood framework similar to
ADMIXTURE, but it implements an optimization algorithm based on an
Active Set (Murty et al., 1988) method to solve the QP problem that,
as we will show in the results section, tends to find higher maximum
likelihood values than ADMIXTURE in similar computational time. In
addition, using the model of NGSADMIX (Skotte et al., 2013), it can work
on genotype likelihoods from low coverage Next Generation Sequencing
(NGS) data instead of called genotypes. It includes an optimization
algorithm for estimating the best covariance matrix compatible with a
tree, thereby estimating a tree, and simple algorithms and visualization
tools for the obtaining a tree from the covariance matrix.

We evaluate the performance of the method on real and simulated
data, and we also presents results on the limitations of the popular
Gaussian model. We show, perhaps unsurprisingly, that the assumption of
a Gaussian model in some cases can lead to severely biased branch lengths

of population trees that have evolved under a Wright-Fisher diffusion
process. This is a limitation of the approach implemented in Ohana and
in other approaches that use Brownian motion models to approximate the
Wright-Fisher diffusion.

2 Methods
Ohana’s qpas program infers admixture using genotype observations
stored in the ped format from Plink (Purcell et al., 2007) or genotype
likelihoods in the bgl format from beagle (Browning et al., 2007).
Ohana’s nemeco program infers population covariances, and Ohana’s
convert program facilitates different stages of the analysis by providing
file conversions and fast approximations. The source code, installation
instructions, and example workflows are available on GitHub at
https://github.com/jade-cheng/ohana.

2.1 Statistical Models

The likelihood model using genotype observations is given by

ln
[
PO
1 (Q, F )

]
=

I∑

i

J∑

j

{
gij · ln

[
K∑

k

qik · fkj
]

+ (2− gij) · ln
[

K∑

k

qik ·
(
1− fkj

)
]}

.

where K is the number of ancestry components, I is the number of
individuals, and J is the number of polymorphic sites. This is the same as
the model used in STRUCTURE (Pritchard et al., 2000), FRAPPE (Tang
et al., 2005), ADMIXTURE (Alexander et al., 2009), and SPA (Yang et al.,
2012).

Using the model in NGSADMIX (Skotte et al., 2013), qpas can also
work on genotype likelihoods. In that case the likelihood model is given
by

ln
[
PL
1 (Q, F )

]
=

I∑

i

J∑

j

ln
(
gAA
ij ·A2

ij + gaaij B
2
ij + gAa

ij · 2AijBij

)
.

Aij =

K∑

k

qik · fkj

Bij =

K∑

k

qik ·
(
1− fkj

)

where gAA
ij , gAa

ij , and gaaij are the probabilities of observing the
sequence data at the ith individual’s jth marker, conditioned on genotypes
AA, Aa (or aA), and aa, respectively. This representation assumes
markers with two alleles, although it could easily be generalized to multiple
alleles. The advantage of working on genotype likelihoods instead of
called genotypes is that genotype likelihoods incorporate the uncertainty
regarding genotype calls inherent in much NGS data, and this makes it
more applicable to low- or medium-coverage data (see e.g., (Skotte et al.,
2013)).

To infer population histories, Ohana models the joint distribution
of allele frequencies across all ancestry components as a multivariate
Gaussian similar to TREEMIX (Pickrell et al., 2012) and Bayenv (Gunther
et al., 2013). The covariance matrix Ω of dimensionK×K is assumed to
be constant among all sites, and the process has a mean µj at site j. The
joint distribution of allele frequencies is then given by

P (fj | Ω, µj) ∼ N (µj , µj (1− µj) Ω) .

This system is under-determined (see e.g., (Felsenstein, 2004) chapter
23), i.e. multiple covariance matrices induce the same probability
distribution on the allele frequencies. Similar to Felsenstein’s restricted
maximum likelihood approach (Felsenstein, 1981), we therefore root the
tree in one of the observations corresponding to conditioning on the allele
frequencies in one of the populations when calculating the joint distribution
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of allele frequencies in the other populations. We emphasize that the
rooting is arbitrary but that it does not imply any assumptions of this
population actually being ancestral (for time reversible models). We then
obtain a new covariance matrix Ω′, which has size (K − 1) × (K − 1)

and a joint density of the form

ln [P2 (F )] = ln





J∏

j

[
1√

|2πcjΩ′|
exp

(
−1

2
· f ′Tj ·

(
cjΩ′

)−1 · f ′j
)]


= −1

2
·

J∑

j

{
(K − 1) · ln (2πcj) + ln

[
det
(
Ω′
)]

+
1

cj
· f ′Tj · Ω′−1 · f ′j

}

where cj = µj (1− µj)

f ′j = fj − fj0 .

2.2 Parameter Inference

2.2.1 Inference for individual ancestries
To estimate Q and F , we use Newton’s approach. In general, we can
approximate a function F (x) with its second order Taylor expansion.
We proceed to minimize this second-order approximation by solving
∆x. In our problem, ∆Q and ∆F are constrained by ∀∆qik, qik +

∆qik ∈ [0, 1], ∀∆fkj , fkj + ∆fkj ∈ [0, 1], and
∑K

k ∆qik = 0

because
∑K

k qik = 1. The analytical forms of the differential for
ln
[
PO
1 (Q, F )

]
are presented below.
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The analytical forms of the differential for ln
[
PL
1 (Q,F )

]
can also

be found below. For both ln
[
PO
1 (Q,F )

]
and ln

[
PL
1 (Q, F )

]
, most

off-diagonal values of the Hessians diminish. Leveraging this block
structure, we convert the problem from manipulating huge matrices into
manipulating sequences of small matrices of size K.
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To solve these inequality- and equality-constrained quadratic
optimization problems, we use an adaptation of the Active Set Algorithm
(Murty et al., 1988). To solve the equality problem defined by the active
set and to compute the Lagrange multipliers of the active set, we use the
Karush-Kuhn-Tucker (KKT) approach (Karush, 1939; Kuhn & Tucker,
1951). In each iteration, the algorithm searches for a better solution by
considering the active constraints as equality constraints. It deviates from
the bounds when the Lagrange multipliers signal a better solution toward
the feasible region. The qpas program from Ohana performs this analysis.
High-level pseudo-code of this algorithm appears in Algorithm 1 of the
Supplementary Information (SI).

The maximum number of iterations performed by Ohana’s qpas
to update Qi or Fj is the number of constraints. In the worst
case, the algorithm considers each constraint once. We have 2K +

1 constraints for updating Qi and 2K constraints for updating Fj .
Solving systems of linear equations used in KKT is at most Θ

(
K3
)
.

The runtime complexity for each update of Q and F , therefore,
becomes Θ

(
IK3 · (2K + 1) + JK3 · 2K

)
= Θ

(
K4 (I + J)

)
,

taking advantage of the block structure.

2.2.2 Inference for population covariances
To optimize the likelihood model defined in the last equation of section
2.1, we use a black-box style of optimizer, the Nelder-Mead (NM)
simplex method (Nelder & Mead et al., 1965). We use sample covariances,
Sc = 1

n
·∑n

i (xi − x̄i) (xi − x̄i)T , as the initial starting point for the
NM optimizer, and we use Cholesky decomposition (Cholesky, 1910) to
determine the positive semi-definiteness and to compute matrix inverses
and determinants. The nemeco program in Ohana performs this analysis.
High-level pseudo-code of this algorithm appears in SI Algorithm 2.

2.3 Estimation of phylogenetic trees

With the estimated covariance matrix in hand, we can construct a
phylogenetic tree. We use the Neighbor-Joining (NJ) method for this,
taking advantage of the NJ theorem (Saitou and Masatoshi, 1987), which
states that when a distance matrix is compatible with a phylogentic tree,
this tree will be accurately reconstructed by the NJ method. To do so, we
first transform the covariance matrix to a distance matrix by observing the
distance between two populations is given by Dist (p1, p2) = Var (p1) +

Var (p2)− 2× Cov (p1, p2).
Notice that there is a one-to-one correspondence between the

covariance matrix and distances. These distances are then fed to the NJ
algorithm. Ohana’s convert program performs all of these steps and in
addition, provides an option to render the tree as SVG.
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13

Graphical tree representation

Fig. 1. Phylogenetic tree construction pipeline. Ohana’s nemeco program estimates a rooted
covariance matrix, where the root is arbitrarily chosen. Ohana’s convert program with
cov2nwk option then recovers the full covariance matrix, computes the distance matrix,
and approximates the distance matrix as a tree structure using the NJ algorithm. Finally,
Ohana’s convert program with nwk2svg option renders the Newick tree in SVG format.
For better control of the graphics, we recommend using our web service: http://www.jade-
cheng.com/graphs/

2.4 Simulated data

We used the software fastsimcoal2 (Excoffier et al., 2013) to produce
genetic data using the Sequential Markov Coalescence (SMC) model
(McVean and Niall, 2005; Marjoram and Simon, 2006). We simulated
populations of nucleotide sequences according to a given demographic
scenario. For each ancestry component, we simulated 100 sequences of
size 20,000,000 bp under an identical population size of 50,000 for all
components. We simulated demographic topologies with certain branch
lengths by controlling population splits and effective population sizes.

We simulated admixture proportions for un-admixed and admixed
scenarios. For un-admixed cases, we simply assigned a fraction of
the sample to each population. For admixed cases, we simulated Qi

independently from Dirichlet distributions Dir (α, α, α), similarly to the
simulations used in (Pritchard et al., 2000) and (Alexander et al., 2009).

Finally, we also simulated genotype observations by first calculating
the major allele frequency fij for each individual at each marker location
and then sampling genotypes under the assumption of Hardy-Weinberg
Equilibrium, i.e. pAA

ij = f2ij , pAa
ij = 2 · fij · (1− fij), paaij =

(1− fij)2, where fij =
∑K

k Qik · Fkj , and pAA, pAa, and paa are
the probabilities of observing major-major, major-minor, or minor-minor
genotypes for the locus.

2.5 Real data

We used four data sets for the software comparison with ADMIXTURE
shown in Figure 2 and Table 1:

• Dataset #1, a compilation of Europeans containing 17,507 markers
and 118 individuals; this data was obtained from the POPRES (Nelson
et al., 2008), ALS (Laaksovirta et al., 2010), Swedish Schizophrenia
(Ripke et al., 2013), and NCNG (Espeseth et al., 2012) projects. It is
a subset of data compiled for a study of Danish genetics

• Dataset #2, a compilation of HapMap (HapMap et al., 2005) CEU,
YRI, MEX, and ASW individuals containing 13,928 markers and
324 individuals. This is the benchmark dataset used in the original
ADMIXTURE paper (Alexander et al., 2009)

• Dataset #3, a compilation of Han Chinese samples from the HapMap
project (HapMap et al., 2005) containing 9,822 markers and 171
individuals.

• Dataset #4, a compilation of HapMap (HapMap et al., 2005) world
population of 4,695 markers 60 individuals of 10 North European,
10 Japanese, 10 Guaharati, 10 Luhya, 10 Maasai Kinyawa, and 10
Tuscan.

For the admixture and covariance data analysis shown in Figure 5, we
used a combination of world-wide samples containing 127,855 markers
and 80 individuals from the HGDP project. We pruned for minor allele
frequencies and Linkage Disequilibrium (LD) with Plink (Purcell et al.,
2007) using the options –indep 50 5 2 –geno 0.0 –maf 0.05.

3 Results

3.1 Computational speed

ADMIXTURE has previously been shown to have the most efficient
optimization algorithm among the previously published methods
(Alexander et al., 2009). We therefore compare the optimization algorithm
in Ohana to the algorithms implemented in ADMIXTURE. For a fair
comparison, we show the distribution of likelihood values for the two
methods, obtained after a fixed amount of computational time, for multiple
different runs of Ohana and ADMIXTURE (Figure 2 and Table 1).
We verify that the likelihood values are comparable between the two
programs by calculating likelihood values for the same parameter values
for both programs. We use four different real data sets described in the
Methods section and explore a range of different values of K. For a
very short amount of computational time, ADMIXTURE tends to find
higher likelihood values. ADMIXTURE may possibly use better initial
values for the optimization. However, after a relative short amount of
time, the qpas algorithm in Ohana tends to find higher likelihood values
than ADMIXTURE for the same computational time.

3.2 Estimation of admixture fraction and tree on simulated
data

We simulated data on a tree using coalescence simulations as described in
the Methods section and estimated for different values of K (Figure 3).
This mimics the procedure often used in real data analyses in which
multiple values of K are explored and presented without knowing the
true value of K, although this value can be estimated using a variety of
methods (Alexander et al., 2011; Scheet and Matthew, 2006; Wold, 1978).

The plots show good correspondence between the true and the
estimated values, for both admixture proportions and demography.
Furthermore, the changes in tree topology as K changes reflect the
hierarchical structure of the tree. For example, at K = 4 the internal
branch reflects the split between populations (0, 1, 2) and (3, 4, 5).

3.3 Model limitations

There are at least three reasons why tree estimation using a Gaussian model
based on estimated allele frequencies may face challenges. First, the allele
frequencies are treated as observed data, but they are truly estimates. This
has the potential for introducing a variety of biases. Second, the use of a
Brownian motion model to approximate genetic drift is inaccurate near the
boundaries and for long divergence times, likely leading to underestimates
of the lengths of long branches. Third, due to differences in sample sizes
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Dataset #1 Dataset #2 Dataset #3 Dataset #4

K Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff Ohana ADMIXTURE Diff

2 -1967733 -1967733 0 -3835358 -3835365 7 -1857263 -1857263 0 -288991 -288991 0

3 -1956785 -1956799 14 -3799873 -3799887 14 -1848450 -1848451 1 -279462 -279463 1

4 -1946218 -1946244 26 -3788598 -3788607 10 -1841198 -1841199 1 -275212 -275213 1

5 -1935775 -1936025 250 -3777351 -3777361 11 -1834377 -1834378 1 -271807 -271808 1

6 -1925636 -1925877 241 -3766558 -3766540 -18 -1827829 -1827830 2 -268837 -268832 -5

7 -1915552 -1915743 191 -3755851 -3755860 9 -1821445 -1821458 13 -265907 -265923 17

8 -1905430 -1905638 209 -3746227 -3745412 -815 -1815214 -1815214 0 -263052 -263096 44

9 -1895372 -1895879 507 -3735240 -3736079 839 -1809084 -1809101 18 -260268 -260440 172

10 -1885306 -1885466 160 -3725558 -3725624 66 -1802911 -1802906 -5 -257539 -257736 197

11 -1875503 -1875853 350 -3715543 -3715157 -385 -1796763 -1796847 84 -254920 -254961 41

12 -1865492 -1865965 474 -3706069 -3707715 1646 -1790671 -1790811 140 -252196 -252266 70

13 -1855502 -1856262 760 -3697531 -3698519 987 -1784688 -1784765 77 -249456 -249468 12

14 -1845732 -1846490 758 -3688970 -3689124 154 -1778599 -1778671 73 -246760 -246817 56

15 -1836315 -1836775 460 -3681092 -3680829 -263 -1772555 -1772669 114 -244058 -244298 240

Table 1. A table of the highest log likelihoods achieved from ADMIXTURE and the qpas program in Ohana for a range K values. For each data set, each program,
and each value of K, we executed 100 times using random seeds 0, 1, ..., 99 and chose the highest value found in any run. This mimics the procedure often used
for real data analysis. In the vast majority of cases, the qpas program in Ohana found significantly higher likelihood values than ADMIXTURE. Dataset #1 is a
compilation of Europeans containing 17,507 markers and 118 individuals. Dataset #2 is the benchmark dataset used in ADMIXTURE (Alexander et al., 2009)
containing 324 CEU, YRI, MEX, and ASW individuals and 13,928 markers. Dataset #3 is a compilation of 171 Han Chinese samples and 9,822 markers. Dataset
#4 is a worldwide population of 60 individuals and 4,695 markers.

for different populations, the Structure model may not identify groups that
correspond to natural units of a tree, even when the populations truly have
evolved in a tree-like fashion.

We explore some of these issues in the following simulation study
(Figure 4) by simulating trees with different divergence times: short,
medium, and long. For very short divergence times (Figure 4-a), the
covariance matrix was estimated poorly because of the small differences
in allele frequencies across populations. This in turn leads to reduced
accuracy in the estimation of the tree. While the topology is recovered
correctly, the lengths of the external branches are overestimated. This likely
happens because the Structure model tends to maximize allele frequency
differences for finite sample sizes, i.e. the estimated difference in allele
frequencies between pairs of populations tends to be larger than the true
difference. This is an issue that can be mitigated with larger sample sizes
and tends to be a problem only when branch lengths are very small.
Nonetheless, it will likely affect many real data analyses.

In the long divergence scenario, Figure 4-c, another problem arises. For
such long branches, the Brownian motion model is a poor approximation
to genetic drift, and the mapping between the two transition probability
functions (i.e. Wright-Fisher diffusion versus Brownian motion) is such
that divergence times tend to be underestimated when they are long. The
consequence is that the branch lengths of the tree are underestimated. We
verify that this is the source of the bias by also simulating data under a
Gaussian model directly and showing that under this model there is no
significant bias for long branch lengths. This is described in SI Section
1. We note that the poor approximation of the Brownian motion model to
the Wright-Fisher diffusion for long divergence times is a limitation for
any inference system using similar statistical models such as TREEMIX
(Pickrell et al., 2012) and Bayenv (Gunther et al., 2013), and it might be
worthwhile in future work to explore the consequence of this effect for
those methods as well.

In the medium-length divergence scenario (Figure 4-b), neither of
the two previously mention sources of bias affect the inferences, and the

estimates of the branch lengths are therefore quite close to the true values.
In all three divergence scenarios, the tree topologies were always estimated
accurately.

3.4 Other simulation scenarios

We also evaluated the performance of the method under several other
simulation scenarios, and the results are presented in SI Section 2 to 5.
A few noteworthy observations include: (1) In more than one simulation
scenario with ancient admixture, the population was not inferred to be
admixed but received a unique admixture component, SI Section 2 Figure 4
and Section 3 Figure 5. The probability of inferring admixture likely
depends on the amount of drift since admixture. In the context of much
human data showing evidence of ancient admixture, it might be worthwhile
in future studies to explore how much drift after admixture is required to
erase the signal of admixture. (2) WhenK is smaller than the true number
of ancestry components, populations with few individuals represented in
the sample tend to be (wrongly) inferred as admixed, SI Section 5 Figure 7.
There is a clear dependence on sample size in inferences of admixture
components in the Structure model. Similarly, the outgroup tends to be
identified as the first admixture component that splits from the rest of the
individuals, only when the outgroup is well-represented in the sample in
terms of the number of individuals.

3.5 Real data analysis

To illustrate the method, we apply it to the panel of global human data
described in the Methods section (Figure 5), using a range ofK values. The
topologies of the trees largely mimic what is already known about human
ancestry (e.g., (Reich et al., 2012)), i.e. using a root in Africa, Asians
and Native Americans cluster together, the European and middle Eastern
groups cluster together, etc. In addition to Yorubans having a long branch
because this group is an outgroup to the rest, we also notice a relatively
long branch leading to Native Americans, reflecting the increased drift



i
i

“main” — 2016/8/23 — 22:55 — page 6 — #6 i
i

i
i

i
i

6 Sample et al.

75 175 275 375 475 575 675 775 875 975 1075 1175 1275 1375 1475 1575 1675 1775 1875 1975 2075 2175 2275 2375 2475

Execution time  in seconds

3740000

3738000

3736000

3734000

3732000

3730000

3728000

3726000

3724000

Lo
g

 L
ik

e
lih

o
o

d

ADMIXTURE

Ohana's qpas

b

25 65 105 145 185 225 265 305 345 385 425 465 505 545 585 625 665 705 745 785 825 865 905 945 985

Execution time  in seconds

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

Lo
g

 L
ik

e
lih

o
o

d

1.802e6

ADMIXTURE

Ohana's qpas

c

65 105 145 185 225 265 305 345 385 425 465 505 545 585 625 665 705 745 785 825 865 905 945 985 1025

Execution time  in seconds

3500

3000

2500

2000

1500

1000

500

0

Lo
g

 L
ik

e
lih

o
o

d

1.885e6

ADMIXTURE

Ohana's qpas

a

d

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Execution time  in seconds

263000

262500

262000

261500

261000

260500

260000

Lo
g

 L
ik

e
lih

o
o

d

ADMIXTURE

Ohana's qpas

Fig. 2. Comparison of computational speed and efficacy of ADMIXTURE and the qpas
program in Ohana. The plots show the change in the distribution of log likelihood values,
produced from the two programs over time. For each data set, each program was executed
100 times using random seeds (0, 1, ..., 99) and K = 9. (a, b, c, d) are four different data
sets, same as in Table 1.

in this group due to the bottleneck into the Americas and possibly small
population sizes thereafter.

4 Discussion
In this paper, we introduced a new implementation of the Structure
model in a maximum likelihood framework. We compared the new
optimization algorithm to the one implemented in the hitherto fastest
program, ADMIXTURE. The qpas program in our software, Ohana,
generally outperformed ADMIXTURE by obtaining estimates with higher
likelihood values in similar computational time.

In addition, we presented a new approach for estimating trees for
ancestry components. Using coalescence simulations, we showed that
when the trees are interpreted as reflecting true population trees, external
branch lengths tend to be overestimated for small divergence times.
However, for long divergence times, the use of a Gaussian model and its
inaccuracy in approximating genetic drift cause branch length estimates to
be downward biased. Nonetheless, the estimates of tree topology appear
reasonably robust. The tree estimation and visualization tool should be
of use to other researchers as an additional possible component of a
Structure model analysis of the data. The tree is a visualization of the
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Fig. 3. An evaluation of the tree inference procedure in Ohana using coalescence
simulations. We simulated 140 individuals in 7 groups, 20 individuals per group. The
first 6 groups were un-admixed. The last group was an equal mixture of the first 3 groups.
(a) Simulated admixture (left) and simulated demography (right). (b, c, d, e, f, g) Estimated
admixture (left) and estimated demography (right) for K = 2, 3, 4, 5, 6, 7, respectively.
For each of the 6 populations, we simulated 100 sequences of size 20,000,000 bp using
fastsimcoal2 (Excoffier et al., 2013). We used a mutation rate of 2× 10−8 per generation,
a recombination rate of 10−8 per generation, and a population size of 50,000. The
time parameters were 1000, 2000, 3000, and 4000 generations for t0 , t1 , t2 , and t3 ,
respectively. A total of 125,787 markers survived filtration for being polymorphic, di-
allelic, and with minor allele frequency greater than 5%. We then estimated admixture
fractions and population trees using values of K ranging from 2 to 7.

covariance structure of the admixture components, and it may as such
be useful even if a strict interpretation of a evolutionary tree may not be
warranted. There might be several reason why such an interpretation may
not be appropriate, most of all because the true nature of the evolution of
the ancestry components may not be well-described by a tree. Ancestry
components are constructions that may or may not reflect true ancestral
populations.
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Ohana’s application on
Aborigine Australians

I participated in a collaborative project researching the genetic history of Abo-
rigine Australians. Admixture and population tree analysis that I produced
using Ohana fundamentally changed the nature of this very large collabora-
tive project. This work has concluded with success. The article was accepted
and will be published in Nature. Ohana’s analysis results appear in the main
article. I also provided a brief outline of the methods and additional analysis
results. They appear in the Supplementary Information accompanying this
Nature article.
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A genomic history of Aboriginal Australia
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Stephan Peischl3,13, Simon Rasmussen14, Stephan Schiffels15, Sankar Subramanian4, Joanne L. Wright4, Anders Albrechtsen16, 
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thorfinn S. Korneliussen1, ivan P. Levkivskyi20, J. Víctor Moreno-Mayar1, Shengyu ni12, Fernando Racimo10, Martin Sikora1, 
Yali Xue8, Farhang A. Aghakhanian21, nicolas Brucato22, Søren Brunak23, Paula F. campos1,24, Warren clark25, 
Sturla Ellingvåg26, Gudjugudju Fourmile27, Pascale Gerbault28,29, Darren injie30, George Koki31, Matthew Leavesley32, 
Betty Logan33, Aubrey Lynch34, Elizabeth A. Matisoo-Smith35, Peter J. McAllister36, Alexander J. Mentzer37, Mait Metspalu38, 
Andrea B. Migliano29, Les Murgha39, Maude E. Phipps21, William Pomat31, Doc Reynolds40, Francois-Xavier Ricaut22, Peter Siba31, 
Mark G. thomas28, thomas Wales41, colleen Ma’run Wall42, Stephen J. oppenheimer43, chris tyler-Smith8, Richard Durbin8, 
Joe Dortch44, Andrea Manica18, Mikkel h. Schierup9, Robert A. Foley1,45, Marta Mirazón Lahr1,45, claire Bowern46, 
Jeffrey D. Wall47, thomas Mailund9, Mark Stoneking12, Rasmus nielsen1,48, Manjinder S. Sandhu8, Laurent Excoffier2,3, 
David M. Lambert4 & Eske Willerslev1,8,18

During most of the last 100,000 years, Australia, Tasmania and New 
Guinea formed a single continent, Sahul, which was separated from 
Sunda (the continental landmass including mainland and west-
ern island Southeast Asia) by a series of deep oceanic troughs never 
exposed by changes in sea level. Colonization of Sahul is thought 
to have required at least 8–10 sea crossings between islands, poten-
tially constraining the occupation of Australia and New Guinea by  

earlier hominins1. Recent assessments suggest that Sahul was settled by 
47.5–55 kya2,3 (Fig. 1). These dates overlap with those for the earliest 
evidence for modern humans in Sunda4.

The distinctiveness of the Australian archaeological and fossil record 
has led to the suggestion that the ancestors of Aboriginal Australians 
and Papuans (‘Australo-Papuans’ hereafter) left the African continent 
earlier than the ancestors of present-day Eurasians5. Although some 
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The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage 
genomes for 83 Aboriginal Australians (speakers of Pama–Nyungan languages) and 25 Papuans from the New Guinea 
Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25–40 thousand years ago (kya), suggesting 
pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, 
all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10–32 kya.  
We infer a population expansion in northeast Australia during the Holocene epoch (past 10 kya) associated with limited 
gene flow from this region to the rest of Australia, consistent with the spread of the Pama–Nyungan languages. We estimate 
that Aboriginal Australians and Papuans diverged from Eurasians 51–72 kya, following a single out-of-Africa dispersal, 
and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians 
potentially associated with living in the desert.
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genetic studies support such multiple dispersals from Africa6, others 
favour only one out-of-Africa (OoA) event, with one or two inde-
pendent founding waves into Asia, of which the earlier contributed 
to Australo-Papuan ancestry7,8. In addition, recent genomic studies 
have shown that both Aboriginal Australian8 and Papuan9 ancestors 
admixed with Neanderthal and Denisovan archaic hominins after 
leaving Africa.

Increased desertification of Australia10 during the last glacial maxi-
mum (LGM) 19–26.5 kya impacted the number and density of human 
populations11. In this context, unique morphological and physiological 
adaptations have been identified in Aboriginal Australians living in 
desert areas today12. In particular, desert groups were hypothesized to 
withstand sub-zero night temperatures without showing the increase 
in metabolic rates observed in Europeans under the same conditions.

At the time of European contact, Aboriginal Australians spoke 
over 250 distinct languages, two-thirds of which belong to the Pama–
Nyungan family and cover 90% of the Australian mainland13. The 
place of origin of this language family and the effect of its extensive 
diffusion on its internal phylogenetic structure have been debated14, 
but the pronounced similarity among Pama–Nyungan languages, 
together with shared socio-cultural patterns, have been interpreted 
as resulting from a mid-Holocene expansion15. Other changes in 
the mid-late Holocene (~ 4 kya) include the proliferation of backed 
blades and the introduction of the dingo16. It has been suggested that 

Pama–Nyungan languages, dingoes and backed blades all reflect the 
same recent migration into Australia17. Although an external origin for 
backed blades has been rejected, dingoes were certainly introduced, 
most likely via island Southeast Asia16. A recent genetic study found 
evidence of Indian gene flow into Australia at the approximate time 
of these Holocene changes18, suggesting a possible association, while 
substantial admixture with Asians and Europeans is well documented 
in historical times19.

To date, only three Aboriginal Australian whole genome sequences 
have been described—one deriving from a historical tuft of hair from 
Australia’s Western Desert8 and two others from cell lines with limited 
provenance information20. In this study, we report the first extensive 
investigation of Aboriginal Australian genomic diversity by analysing 
the high-coverage genomes of 83 Pama–Nyungan-speaking Aboriginal 
Australians and 25 Highland Papuans.

Data set
We collected saliva samples for DNA sequencing in collaboration 
with Aboriginal Australian communities and individuals in Australia 
(Supplementary Information section S01). We sequenced genomes 
at high-depth (average of 60× , range 20–100× ) from 83 Aboriginal 
Australian individuals widely distributed geographically and linguisti-
cally (see Fig. 1 and associated legend for the location and label for each 
group as well as Extended Data Table 1, Supplementary Information 
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Figure 1 | Aboriginal Australian and Papuan samples used in this study, 
as well as archaeological sites and human remains dated to ~40 kya 
or older in southern Sunda and Sahul. The stars indicate the centroid 
location for each sampling group (sample size in parentheses). Publicly 
available genetic data (see Supplementary Information section S04) used 
as a reference panel in this study are shown as squares. Sites with dated 
human remains are shown as white circles and the archaeological sites 
as black circles. The associated dates can be found in Supplementary 
Information section S03. Grey boundaries correspond to territories 
defined by the language groups provided by the Australian Institute 
of Aboriginal and Torres Strait Islander Studies45. Sampled Aboriginal 
Australians self-identify primarily as: Yidindji and Gungandji from the 
Cairns region (CAI, n =  10, see also Supplementary Information section 
S02); Yupangati and Thanakwithi from northwest Cape York (WPA, 
n =  6), Wangkangurru and Yarluyandi from the Birdsville region (BDV, 

n =  10, 9 sequenced at high depth), Barkindji from southeast (RIV, n = 8); 
Pilbara area Yinhawangka and Banjima (PIL, n =  12), Ngaanyatjarra from 
western central desert (WCD, 13), Wongatha from Western Australia’s 
northern Goldfields (WON, n =  11), Ngadju from Western Australia’s 
southern Goldfields (NGA, 6); and Nyungar from southwest Australia 
(ENY, 8). Papuans include samples from the locations Bundi (BUN, 
n =  5), Kundiawa (KUN, n =  5), Mendi (MEN, n =  5), Marawaka (MAR, 
n =  5) and Tari (TAR, n =  5). We generated SNP array data (black stars) 
for 45 Papuan samples including 24 Koinambe (KOI) and 15 Kosipe 
(KOS)—described previously46—and 6 individuals with Highland ancestry 
sampled in Port Moresby (PMO). Lake Carpentaria (LC), which covered a 
significant portion of the land bridge between Australia and New Guinea 
11.5–40 kya and thus potentially acted as a barrier to gene flow, is also 
indicated. Map data were sourced from the Australian Government,  
http://www.naturalearthdata.com/ and our research.



0 0  M o n t h  2 0 1 6  |  V o L  0 0 0  |  n A t U R E  |  3

Article reSeArcH

sections S02–S04 for more information). Additionally, we sequenced 
25 Highland Papuan genomes (38–53× ; Supplementary Information 
sections S03, S04) from individuals representative of five linguistic 
groups, and generated genotype data for 45 additional Papuans living 
or originating in the Highlands (Fig. 1). These data sets were com-
bined with previously published genomes and SNP array genotype data, 
including Aboriginal Australian data from Arnhem Land, and from a 
human diversity cell line panel from the European Collection of Cell 
Cultures20 (ECCAC, Fig. 1, Supplementary Information section S04).

We explored the extent of admixture in the Aboriginal Australian 
autosomal gene pool by estimating ancestry proportions with an 
approach based on sparse non-negative matrix factorization (sNMF)21. 
We found that the genomic diversity of Aboriginal Australian popu-
lations is best modelled as a mixture of four main genetic ancestries 
that can be assigned to four geographic regions based on their relative 
frequencies: Europe, East Asia, New Guinea and Australia (Fig. 2a, 
Extended Data Fig. 1, Supplementary Information section S05). The 
degree of admixture varies among groups (Supplementary Information 
section S05), with the Ngaanyatjarra speakers from central Australia 
(WCD) having a significantly higher ‘Aboriginal Australian compo-
nent’ (median value =  0.95) in their genomes than the other groups 
sampled (median value =  0.64; Mann–Whitney rank sum test, one tail 
P value =  3.55 ×  10−7). The East Asian and New Guinean components 
are mostly present in northeastern Aboriginal Australian populations, 
while the European component is widely distributed across groups  
(Fig. 2a, Extended Data Fig. 1, Supplementary Information section 
S05). In most of the subsequent analyses, we either selected specific 
samples or groups according to their level of Aboriginal Australian 
ancestry, or masked the data for the non-Aboriginal Australian ancestry  
genomic components (Supplementary Information section S06).

Colonization of Sahul
The origin of Aboriginal Australians is a source of much debate, as 
is the nature of the relationships among Aboriginal Australians, and 

between Aboriginal Australians and Papuans. Using f3 statistics22, 
estimates of genomic ancestry proportions and classical multidimen-
sional scaling (MDS) analyses, we find that Aboriginal Australians and 
Papuans are closer to each other than to any other present-day world-
wide population considered in our study (Fig. 2b, c, Supplementary 
Information section S05). This is consistent with Aboriginal Australians 
and Papuans originating from a common ancestral population which  
initially colonized Sahul. Moreover, outgroup f3 statistics do not reveal 
any significant differences between Papuan populations (Highland 
Papuan groups sampled in this study and the Human Genome Diversity 
Project (HGDP-Papuans)) in their genetic affinities to Aboriginal 
Australians (Extended Data Fig. 2a), suggesting that Papuan pop-
ulations diverged from one another after or at the same time as the  
divergence between Aboriginal Australians and Papuans.

To investigate the number of founding waves into Australia, we con-
trasted alternative models of settlement history through a composite 
likelihood method that compares the observed joint site frequency 
spectrum (SFS) to that predicted under specific demographic models23  
(Fig. 3, Supplementary Information section S07). We compared HGDP-
Papuans to four Aboriginal Australian population samples with low 
levels of European admixture (Extended Data Fig. 1) from both north-
eastern (CAI and WPA) and southwestern desert (WON and WCD) 
Australia. We compared one- and two-wave models, where each 
Australian region was either colonized independently, or by descend-
ants of a single Australian founding population after its divergence from 
Papuans. The one-wave model provides a better fit to the observed SFS, 
suggesting that the ancestors of the sampled Aboriginal Australians 
diverged from a single ancestral population. This conclusion is also 
supported by MDS analyses (Fig. 2b), as well as by estimation of ances-
try proportion where all Aboriginal Australians form a cluster distinct 
from the Papuan populations (Extended Data Fig. 1, Supplementary 
Information section S05). Additionally, it is supported by outgroup f3 
analyses, where all Aboriginal Australians are largely equidistant from 
Papuans when adjusting for recent admixture (Extended Data Fig. 2b). 
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Figure 2 | Genetic ancestry of Aboriginal Australians in a worldwide 
context. a, Classical Multidimensional scaling (MDS) plot of first two 
dimensions based on an identity-by-state (IBS) distance matrix (based 
on 54,971 SNPs) between individuals from this study and worldwide 
populations, including publicly available data9,18,26,47. The first two 
dimensions explain 19% of the variance in the IBS distance matrix. 
Individuals are colour-coded according to sampling location, grouped into 
Australia (Arnhem Land, ECCAC, BDV, CAI, ENY, NGA, PIL, RIV, WCD, 
WON, WPA); East Asia (Cambodian, Dai, Han, Japanese, Naxi); Europe 
(English, French, Sardinian, Scottish, Spanish); India (Vishwabrahmin, 
Dravidian, Punjabi, Guaharati); and New Guinea (HGDP-Papuan, Central 
Province, Eastern Highlands, Gulf Province, Highlands, PMO, KOI, 
KOS, BUN, KUN, MEN, TAR, MAR). Stars indicate the centroid for each 
Aboriginal Australian group. Aboriginal Australians from this study as 
well as from previous studies are closest to Papuans and also show signals 
of admixture with Eurasians (see Supplementary Information section S05 
for details). b, Estimation of genomic ancestry proportions for the best 
number of ancestral components (K =  7) based on Aboriginal Australian 
and Papuan whole genome sequence and SNP array data from this study 
(see Fig. 1), and publicly available SNP array data9,18,26,47 (Supplementary 
Information section S05). Each ancestry component has been labelled 
according to the geographic region showing the corresponding highest 
frequency. The area of each pie chart is proportional to the sample size  

(as depicted in the legend). The genomes of Aboriginal Australian populations  
are mostly a mixture of European and Aboriginal Australian ancestry 
components. Northern Aboriginal Australian groups (Arnhem Land, CAI, 
ECCAC, PIL and WPA) are also assigned to components mainly present in 
East Asian populations, while northeastern Aboriginal Australian groups 
(CAI and WPA) also show components mainly present in New Guinean 
populations. A background of 5% ‘Melanesian’ component is observed 
in all the Aboriginal Australian populations; however, this component is 
widely spread over the geographic area shown in this figure, being present 
from Taiwan to India. We detected on average 1.5% ‘Indian’ component 
and 1.4% ‘Polynesian’ component across the Aboriginal Australian 
samples, but we attribute these residual ancestry components to statistical 
noise as they are present in other Southeast Asian populations and are 
not supported by other analyses (Supplementary Information section 
S05). c, A heat map displaying outgroup f3 statistics of the form f3(Mbuti; 
WCD02, X), quantifying genetic drift shared between the putatively 
unadmixed individual WCD02 chosen to represent the Aboriginal 
Australian population, and various populations throughout the broader 
region for which either array genotypes or whole-genome sequencing data 
were publicly available or generated in this study. We used 760,116 SNPs 
for which WCD02 had non-missing array genotypes that overlapped with 
any other data sets. Standard errors as estimated from block jack-knife 
resampling across the genome were in the range 0.00213–0.00713.
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Thus, our results, based on 83 Pama–Nyungan speakers, do not support 
earlier claims of multiple ancestral migrations into Australia giving rise 
to contemporary Aboriginal Australian diversity24.

The SFS analysis indicates that there was a bottleneck in the ancestral 
Australo-Papuan population ~ 50 kya (95% confidence intervals (CI) 
35–54 kya, Supplementary Information section S07), which overlaps 
with archaeological evidence for the earliest occupation of both Sunda 
and Sahul 47.5–55 kya2,3. We further infer that the ancestors of Pama–
Nyungan speakers and Highland Papuans diverged ~ 37 kya (95% CI 
25–40 kya, Fig. 3, Supplementary Information section S07), which is 
in close agreement with results of multiple sequentially Markovian 
coalescent (MSMC) analyses (Extended Data Fig. 2c, Supplementary 
Information section S08), a method estimating cross coalescence rates 
between pairs of populations based on individuals’ haplotypes25. This 
result is also in agreement with previous estimates, for example, based 
on SNP array data18.

Archaic admixture
We characterized the number, timing and intensity of archaic gene 
flow events using three complementary approaches: SFS-based 
(Supplementary Information section S07), a goodness-of-fit anal-
ysis combining D-statistics (Supplementary Information section 
S09), and a method that infers putatively derived archaic ‘haplotypes’ 
(Supplementary Information section S10). Aboriginal Australians 
and Papuan genomes show an excess of putative Denisovan  

introgressed sites (Extended Data Fig. 3a, Supplementary Information 
section S11), as well as substantially more putative Denisovan-
derived haplotypes (PDHs) than other non-Africans (Extended Data  
Fig. 3b, Supplementary Information section S10). The number and total 
length of those putative haplotypes vary considerably across samples. 
However, the estimated number of PDHs correlates almost perfectly 
(r2 =  0.96) with the estimated proportion of Australo-Papuan ancestry 
in each individual (Extended Data Fig. 3c). We found no significant 
difference in the distribution of the number of PDHs or the average 
length of PDHs between putatively unadmixed Aboriginal Australians 
and Papuans (Mann–Whitney U-test, P >  0.05). Moreover, the genetic 
differentiation between WCD and Papuans was also similar for both 
autosomal SNPs and PDHs with FST values around 0.12. Taken together, 
these analyses provide evidence for Denisovan admixture predating 
the population split between Aboriginal Australians and Papuans (see 
also ref. 26) and widespread recent Eurasian admixture in Aboriginal 
Australians (Fig. 2a, b, Supplementary Information section S05). 
By constraining Denisovan admixture to have occurred before the 
Aboriginal Australian-Papuan divergence, the SFS-based approach 
results in an admixture estimate of ~ 4.0% (95% CI 3.3–5.0%, Fig. 4, 
Supplementary Information section S07), similar to that obtained by 
D-statistics (~ 5%, Supplementary Information section S09). The SFS 
analyses further suggest that Denisovan/Australo-Papuan admixture 
took place ~ 44 kya (95% CI 31–50 kya, Supplementary Information 
section S07).

The SFS analysis also provides evidence for a primary Neanderthal 
admixture event (~ 2.3%, 95% CI 1.1–3.5%, Fig. 4, Supplementary 
Information section S07) taking place in the ancestral population of 
all non-Africans ~ 60 kya (95% CI 55–84 kya, Fig. 4, Supplementary 
Information section S07). Although we cannot estimate absolute 
dates of archaic admixture from the lengths of PDHs and putative 
Neanderthal-derived haplotypes (PNHs) in our samples, we can obtain 
a relative date. We found that, for putatively unadmixed Aboriginal 
Australians and HGDP-Papuans, the average PNH and PDH lengths 
are 33.8 kb and 37.4 kb, respectively (Extended Data Fig. 3b). These 
are significantly different from each other (P =  9.65× 10−6 using a 
conservative sign test), and suggest that the time since Neanderthal 
admixture was about 11% greater than the time since Denisovan 
admixture, roughly in line with our SFS-based estimates for the 
Denisovan pulse (31–50 kya) versus the primary pulse of Neanderthal 
admixture (55–84 kya). The SFS analysis also indicates that the main 
Neanderthal pulse was followed by a further 1.1% (95% CI 0.2–2.7%, 
Fig. 4, Supplementary Information section S07) pulse of Neanderthal 
gene flow into the ancestors of Eurasians. Finally, using our SFS- and 
haplotype-based approaches, we explored additional models involving 
complex structure among the archaic populations. We found suggestive 
evidence that the archaic contribution could be more complex than a 
model involving the discrete Denisovan and Neanderthal admixture  
pulses shown in Fig. 48,9 (Supplementary Information sections  
S07, S10).

Out of Africa
To investigate the relationship of Australo-Papuan ancestors with 
other world populations, we computed D-statistics22 of the form 
((H1 =  Aboriginal Australian, H2 =  Eurasian), H3 =  African) and 
((H1 =  Aboriginal Australian, H2 =  Eurasian), H3 =  Ust’-Ishim). 
Several of these were significantly positive (Supplementary Information 
section S09), suggesting that Africans and Ust’-Ishim—a ~ 45 kya 
modern human from Asia27—are both closer to Eurasians than to 
Aboriginal Australians. These findings are in agreement with a model 
of Eurasians and Australo-Papuan ancestors dispersing from Africa 
in two independent waves. However, when correcting for a moder-
ate amount of Denisovan admixture, Aboriginal Australians and 
Eurasians become equally close to Ust’-Ishim, as expected in a single 
OoA scenario (Supplementary Information section S09). Similarly, 
the D-statistics for ((H1 =  Aboriginal Australian, H2 =  Eurasian), 
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Figure 3 | Settlement of Australia. Best supported demographic model of 
the colonization of Australia and New Guinea. The demographic history 
of Aboriginal Australian populations was modelled by considering that 
sampled individuals are from sub-populations (‘islands’) that are part of 
two larger regions (‘continents’), which geographically match the northeast 
and the southwestern desert regions of Australia. Maximum likelihood 
parameter estimates were obtained from the joint SFS of Han Chinese, 
HGDP-Papuans, CAI, WPA, WON and WCD. The 95% CI, obtained by 
non-parametric block bootstrap, are shown within parentheses. Estimated 
migration rates scaled by the effective population size (2Nm) are shown 
above/below the corresponding arrows. Only Aboriginal Australian 
individuals with low European ancestry were included in this analysis. In 
this model, we estimated parameters specific to the settlement of Australia 
and New Guinea (numerical values shown in black); keeping all the 
other demographic parameters set to the point estimates shown in Fig. 4 
(numerical value shown in grey here). Only admixture events involving 
proportions > 0.5% are shown. The inferred parameters were scaled using 
a mutation rate of 1.25 × 10−8 per generation per site41 and a generation 
time of 29 years corresponding to the average hunter–gatherer generation 
interval for males and females42. See Supplementary Information section 
S07 for further details.
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H3 =  African) became much smaller after correcting for Denisovan 
admixture. Additionally, a goodness-of-fit approach combining 
D-statistics across worldwide populations indicates stronger sup-
port for two waves OoA, but when taking Denisovan admixture into 
account, a one-wave scenario fits the observed D-statistics equally well 
(Extended Data Fig. 4a, b, Supplementary Information section S09).

To investigate the timing and number of OoA events giving rise 
to present-day Australo-Papuans and Eurasians further we used the 
observed SFS in a model-based composite likelihood framework. When 
considering only modern human genomes, we find evidence for two 
waves OoA, with a dispersal of Australo-Papuans ~ 14,000 years before 
Eurasians (Supplementary Information section S07). However, when 
explicitly taking into account Neanderthal and Denisovan introgression 

into modern humans9,20, the SFS analysis supports a single origin for the 
OoA populations marked by a bottleneck ~ 72 kya (95% CI 60–104 kya,  
Fig. 4, Supplementary Information section S07). This scenario is rein-
forced by the observation that the ancestors of Australo-Papuans and 
Eurasians share a 2.3% (95% CI 1.1–3.5%) Neanderthal admixture 
pulse. Furthermore, modern humans have both a linkage disequilib-
rium decay rate and a number of predicted deleterious homozygous 
mutations (recessive genetic load) that correlate with distance from 
Africa (Supplementary Information sections S05, S11, Extended Data 
Fig. 5), again consistent with a single African origin.

The model best supported from the SFS analysis also suggests an early 
divergence of Australo-Papuans from the ancestors of all non-Africans,  
in agreement with two colonization waves across Asia8,9,18. Under 
our best model, Australo-Papuans began to diverge from Eurasians  
~ 58 kya (95% CI 51–72 kya, Fig. 4, Supplementary Information section 
S07), whereas Europeans and East Asians diverged from each other  
~ 42 kya (95% CI 29–55 kya, Fig. 4, Supplementary Information  
section S07), in agreement with previous estimates7,18,28. We find  
evidence for high levels of gene flow between the ancestors of Eurasians 
and Australo-Papuans, suggesting that, after the fragmentation of the 
OoA population (‘Ghost’ in Fig. 4) 57–58 kya, the groups remained in 
close geographical proximity for some time before Australo-Papuan 
ancestors dispersed eastwards. Furthermore, we infer multiple gene 
flow events between sub-Saharan Africans and Western Eurasians after 
~ 42 kya, in agreement with previous findings of gene flow between 
African and non-African populations28.

MSMC analyses suggest that the Yoruba/Australo-Papuans and the 
Yoruba/Eurasians cross-coalescence rates are distinct, implying that the 
Yoruba and Eurasian gene trees across the genome have, on average, 
more recent common ancestors (Extended Data Fig. 4c, Supplementary 
Information section S08). We show through simulations that these dif-
ferences cannot be explained by typical amounts of archaic admixture 
(< 20%, Extended Data Fig. 4d). Moreover, the expected difference in 
phasing quality among genomes is not sufficient to explain this pat-
tern fully (Supplementary Information section S08). While a similar 
separation in cross coalescence rate curves is obtained when compar-
ing Eurasians and Australo-Papuans with Dinka, we find that, when 
comparing Australo-Papuans and Eurasians with San, the cross coa-
lescence curves overlap (Extended Data Fig. 4c). We also find that the 
inferred changes in effective population size through time of Aboriginal 
Australians, Papuans, and East Asians are very similar until around 
50 kya, including a deep bottleneck around 60 kya (Extended Data  
Fig. 6). Taken together, these MSMC results are consistent with a split 
of both Australo-Papuans and Eurasians from a single African ancestral 
population, combined with gene flow between the ancestors of Yoruba 
or Dinka (but not San) and the ancestors of Eurasians that is not shared 
with Australo-Papuans. These results are qualitatively in line with the 
SFS-based analyses (see for example, Fig. 4). While our results do not 
exclude the possibility of an earlier OoA expansion, they do indicate 
that any such event left little or no trace in the genomes of modern 
Australo-Papuans.

Genetic structure of Aboriginal Australians
Uniparental haplogroup diversity in this data set (Extended Data 
Table 1, Supplementary Information section S12) is consistent with 
previous studies of mitochondrial DNA (mtDNA) and Y chromo-
some variation in Australia and Oceania29, including the presence of 
typically European, Southeast and East Asian lineages30. The com-
bined results provide important insights into the social structure of 
Aboriginal Australian societies. Aboriginal Australians exhibit greater 
between-group variation for mtDNA (16.8%) than for the Y chromo-
some (11.3%), in contrast to the pattern for most human populations31. 
This result suggests higher levels of male- than female-mediated migra-
tion, and may reflect the complex marriage and post-marital residence 
patterns among Pama–Nyungan Australian groups32. As expected 
(Supplementary Information section S02), the inferred European 
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Figure 4 | Out of Africa. We used a likelihood-based approach to 
investigate whether the joint SFS supports the one-wave (1 OoA) or two-
wave (2 OoA) scenarios. The maximum likelihood estimates are indicative 
of which scenario is best supported. As shown on the top left inset, under 
the 1 OoA scenario we expect (i) the presence of an ancestral bottleneck 
(in black); (ii) a relatively large Neanderthal admixture pulse shared by the 
ancestors of all non-Africans; and (iii) overlapping divergence times  
of the ancestors of Aboriginal Australians and Eurasians. In contrast, the 
top right inset shows parameters expected under a 2 OoA scenario:  
(i) a limited/absent ancestral bottleneck (in black) in the ancestors of all 
non-Africans; (ii) no shared Neanderthal admixture in the ancestors of 
all non-Africans; (iii) distinct divergence times for Aboriginal Australians 
and Eurasians. The main population tree shows the best fitting topology, 
which supports the 1 OoA scenario, and maximum likelihood estimates 
(MLEs) for the divergence and admixture times and the admixture 
proportions (with 95% CI obtained by non-parametric block bootstrap 
shown within square brackets). We assume that the OoA event is 
associated with the ancestral bottleneck. The ‘Ghost’ population represents 
an unsampled population related to Yoruba that is the source of the out-
of-Africa event(s). Our results suggest that these two African populations 
split significantly earlier (~ 125 kya) than the estimated time of dispersals 
into Eurasia. Note that under a 1 OoA scenario, this ghost population 
becomes, after the ancestral bottleneck, the ancestral population of all 
non-Africans that admixed with Neanderthals. Arrow thicknesses are 
proportional to the intensity of gene flow and the admixture proportions, 
and only admixture events involving proportions > 0.5% are displayed. 
The inferred parameters were scaled as for Fig. 3. See Supplementary 
Information section S07 for further details.
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ancestry for the Y chromosome is much greater than that for mtDNA 
(31.8% versus 2.4%), reflecting male-biased European gene flow into 
Aboriginal Australian groups during the colonial era.

On an autosomal level, we find that genetic relationships 
within Australia reflect geography, with a significant correlation 
(rGEN,GEO =0.77, P  <0.0005, Extended Data Fig. 7b) between the first 
two dimensions of an MDS analysis on masked genomes and geograph-
ical location (Supplementary Information section S13). Populations 
from the centre of the continent occupy genetically intermediate 
positions (Extended Data Fig. 7a, b). A similar result is observed 
with an FST-based tree for the masked genomic data (Extended Data  
Fig. 7c, Supplementary Information section S05) as well as in anal-
yses of genetic affinity based on f3 statistics (Extended Data Fig. 2a),  
suggesting a population division between northeastern and southwest-
ern groups. This structure is further supported by SFS analyses showing 
that populations from southwestern desert and northeastern regions 
diverged as early as ~ 31 kya (95% CI 10–32 kya), followed by limited 
gene flow (estimated scaled migration rate (2Nm) <  0.01, 95% CI 0.00 
<  Nm<  11.25). An analysis of the major routes of gene flow within 
the continent supports a model in which the Australian interior acted 
as a barrier to migration. Using a model inspired by principles of elec-
trical engineering where gene flow is represented as a current flowing 
through the Australian continent and using observed FST values as a 
proxy for resistance, we infer that gene flow occurred preferentially 
along the coasts of Australia (Extended Data Fig. 7e–g, Supplementary 
Information section S13). These findings are consistent with a model 
of expansion followed by population fragmentation when the extreme 
aridity in the interior of Australia formed barriers to population move-
ments during the LGM33.

We used MSMC on autosomal data and mtDNA Bayesian skyline 
plots34 (BSP) to estimate changes in effective population size within 
Australia. The MSMC analyses provide evidence of a population expan-
sion starting ~ 10 kya in the northeast, while both MSMC and BSP 
indicate a bottleneck in the southwestern desert populations taking 
place during the past ~ 10 kya (Extended Data Fig. 6, Supplementary 
Information sections S08, S12). This is consistent with archaeological 
evidence for a population expansion associated with significant changes 
in socio-economic and subsistence strategies in Holocene Australia35.

European admixture almost certainly had not occurred before the 
late 18th century, but earlier East Asian and/or New Guinean gene 
flow into Australia could have taken place. We characterized the mode 
and tempo of gene flow into Aboriginal Australians using three dif-
ferent approaches (Supplementary Information sections S06, S07, 
S14). We used approximate Bayesian computation (ABC) to compare 
the observed mean and variance in the proportion of European, East 
Asian and Papuan admixture among Aboriginal Australian individu-
als, to that computed from simulated data sets under various models 
of gene flow. We estimated European and East Asian admixture to 
have occurred on the order of ten generations ago (Supplementary 
Information section S14), consistent with historical and ethnographic 
records. Consistent with this, a local ancestry approach suggests that 
European and East Asian admixture is more recent than Papuan 
admixture (Extended Data Fig. 4a, Supplementary Information sec-
tion S06). In addition, both ABC and SFS analyses indicate that the 
best-fitting model for the Aboriginal Australian-Papuan data is one of 
continuous but modest gene flow, mostly unidirectional from Papuans 
to Aboriginal Australians, and geographically restricted to north-
east Aboriginal Australians (2Nm =  0.41, 95% CI 0.00–20.35, Fig. 3, 
Supplementary Information section S07).

To investigate gene flow from New Guinea further, we conducted 
analyses on the Papuan ancestry tracts obtained from the local ancestry 
analysis. We inferred local ancestry as the result of admixture between 
four components: European, East Asian, Papuan and Aboriginal 
Australian (Supplementary Information section S06). The Papuan 
tract length distribution shows a clear geographic pattern (Extended 
Data Fig. 8); we find a significant correlation of Papuan tract length 

variance with distance from WCD to other Aboriginal Australian 
groups (r =  0.64, P <  0.0001). The prevalence of short ancestry tracts 
of Papuan origin, compared to longer tracts of East Asian and European 
origin, suggests that a large fraction of the Papuan gene flow is much 
older than that from Europe and Asia, consistent with the ABC anal-
ysis (Supplementary Information section S14). We also investigated 
possible South Asian (Indian related) gene flow into Aboriginal 
Australians, as reported recently18. However, we found no evidence of 
a component that can be uniquely assigned to Indian populations in 
the Aboriginal Australian gene pool using either admixture analyses 
or f3 and D-statistics (Supplementary Information section S05), even 
when including the original Aboriginal Australian genotype data from 
Arnhem Land. The different size and nature of the comparative data 
sets may account for this discrepancy.

Pama–Nyungan languages and genetic structure
To investigate whether linguistic relationships reflect genetic rela-
tionships among Aboriginal Australian populations, we inferred 
a Bayesian phylogenetic tree for the 28 different Pama–Nyungan 
languages represented in this sample13 (Extended Data Table 1, 
Supplementary Information section S15). The resulting linguistic 
and FST-based genetic trees (Extended Data Fig. 7c, d) share several 
well-supported partitions. For example, both trees indicate that the 
northeastern (CAI and WPA) and southwestern groups (ENY, NGA, 
WCD and WON) form two distinct clusters, while PIL, BDV and RIV 
are intermediate. A distance matrix between pairs of languages, com-
puted from the language-based tree, is significantly correlated with 
geographic distances (rGEO,LAN =  0.83, Mantel test two-tail P value 
on 9,999 permutations =  0.0001, Supplementary Information section 
S13). This suggests that differentiation among Pama–Nyungan lan-
guages in Australia follows geographic patterns, as observed in other 
language families elsewhere in the world36. Furthermore, we find a 
correlation between linguistics and genetics (rGEN,LAN =  0.43, Mantel 
test P <  0.0005, Supplementary Information section S13) that remains 
significant when controlling for geography (rGEN,LAN.GEO =  0.26, partial 
Mantel test P < 0.0005, Supplementary Information section S13). This is 
consistent with language differentiation after populations lost (genetic) 
contact with one another. The correlation between the linguistic and 
genetic trees is all the more notable given the difference in time scales: 
the Pama–Nyungan family is generally accepted to have diversified 
within the last 6,000 years37, while the genetic estimates are two to 
five times that age. The linguistic tree thus cannot simply reflect initial 
population dispersals, but rather reflects a genetic structure that has a 
complex history, with initial differentiation 10–32 kya, localized pop-
ulation expansions (northeast) and bottlenecks (southwest) ~ 10 kya, 
and subsequent limited gene flow from the northeast to the southwest. 
The latter may be the genetic signature that tracks the divergence of the 
Pama–Nyungan language family.

Selection in Aboriginal Australians
To identify selection signatures specific to Aboriginal Australians, 
we used two different methods based on the identification of SNPs 
with high allele frequency differences between Aboriginal Australians 
and other groups, similar to the population-branch statistics38 (PBS, 
Supplementary Information section S16). First, we scanned the 
Aboriginal Australian genomes for loci with unusually large changes 
in allele frequency since divergence from Papuans, taking recent 
admixture with Europeans and Asians into account (‘global scan’). 
Second, we identified genomic regions showing high differentiation 
associated with different ecological regions within Australia (‘local 
scan’, Supplementary Information section S16). Among the top ranked 
peaks (Extended Data Table 2) we found genes associated with the 
thyroid system (NETO1, seventh peak in the global scan, and KCNJ2, 
first peak in the local scan) and serum urate levels (eighth peak in the 
global scan). Thyroid hormone levels are associated with Aboriginal-
Australian-specific adaptations to desert cold39 and elevated serum 
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urate levels with dehydration40. These genes are therefore candidates 
for potential adaptation to life in the desert. However, further studies 
are needed to associate putative selected genetic variants with specific 
phenotypic adaptations in Aboriginal Australians.

Discussion
Australia has one of the longest histories of continuous human occu-
pation outside Africa, raising questions of origins, relatedness to other 
populations, differentiation and adaptation. Our large-scale genomic 
data and analyses provide some answers but also raise new questions. 
We find that Aboriginal Australians and Eurasians share genomic  
signatures of an OoA dispersal—a common African ancestor, a bot-
tleneck and a primary pulse of Neanderthal admixture. However, 
Aboriginal Australian population history diverged from that of other 
Eurasians shortly after the OoA event, and included private admixture 
with another archaic hominin.

Our genetic-based time estimates are relative, and to obtain absolute 
dates we relied on two rescaling parameters: the human mutation rate 
and generation time (assumed to be 1.25× 10−8 per generation per site 
and 29 years, respectively, based on recent estimates41,42). Although the 
absolute estimates we report would need to be revised if these param-
eters were to change, the current values can be the starting point of 
future research and should be contextualized.

We find a relatively old divergence between the ancestors of Pama–
Nyungan speakers and Highland Papuans, only ~ 10% younger than 
the European–East Asian split time. With the assumed rescaling param-
eters this corresponds to ~ 37 kya (95% CI 25–40 kya) implying that 
the divergence between sampled Papuans and Aboriginal Australians 
is older than the disappearance of the land bridge between New Guinea 
and Australia about 7–14.5 kya, and thus suggests ancient genetic struc-
ture in Sahul. Such structure may be related to palaeo-environmental 
changes leading up to the LGM. Sedimentary studies show that the 
large Lake Carpentaria (500 ×  250 km, Fig. 1) formed ~ 40 kya, when 
sea levels fell below the 53-m-deep Arafura Sill43. Although Australia 
and New Guinea remained connected until the early Holocene, the 
flooding of the Carpentaria basin and its increasing salinity43 may have 
thus promoted population isolation.

Our results imply that Aboriginal Australian groups are the descend-
ants of the ancestral population that first colonized Australia44. They 
also indicate that the population that diverged from Papuans ~ 37 kya 
was ancestral to all Aboriginal Australian groups sampled in this study; 
yet, archaeological evidence shows that by 40–45 kya, humans were 
widespread within Australia (Fig. 1). Three non-exclusive scenarios 
could account for this observation: (1) the Aboriginal Australian ances-
tral population was widespread before the divergence from Papuans, 
maintaining gene flow across the continent; (2) it was deeply struc-
tured, and only one group survived to give rise to modern Aboriginal 
Australians; and (3) other groups survived, but the descendants are 
not represented in our sample. Additional genomes, especially from 
Tasmania and the non-Pama–Nyungan regions of the Northern 
Territory and Kimberley, as well as ancient genomes predating 
European contact in Australia and other expansions across Southeast 
Asia17, may help resolve these questions in the future.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Extended Data Figure 1 | Per individual admixture proportions of 
K = 7 ancestral components including Aboriginal Australians, New 
Guineans, Europeans, Africans, Melanesians and Polynesians. The 
genome of each individual is depicted as a bar and is coloured according 
to the estimated genome-wide proportions of ancestry components. An 
unrooted tree showing the relationships between the identified ancestral 
components is also estimated by our method. Each ancestry has been 
labelled with the name of the population (see also map) showing the 

highest fraction of that ancestral component. The cross-validation error is 
minimized for this value of K for fivefold cross-validation (Supplementary 
Information section S05). The rooted tree supports the shared genetic 
origin of Aboriginal Australians, Papuans and Bougainvilleans. Note that 
only individuals with more than 50% of Aboriginal Australian ancestry in 
their genomes as defined in SOM06 were included in the analyses.  
Map data ©2016 Google, INEGI. Trees constructed with http://jade-cheng.
com/trees/.
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Extended Data Figure 2 | Genetic relationships of Aboriginal 
Australians and Papuans. a, Genetic affinities between a Western 
Central Desert (WCD02) genome and Aboriginal Australians and 
Papuans. Outgroup f3 statistics between WCD02 and all other Aboriginal 
Australians and Highland Papuan individuals that were whole-genome 
sequenced for this study, using all genotypes called from the sequencing 
data. Because the widespread recent admixture in Aboriginal Australians 
has large confounding effects on the f3 statistics, the values were adjusted 
using the slope coefficient from a simple linear regression model fitted 
to the relationship between f3 and the fraction of non-indigenous (that 
is, not Aboriginal Australian nor Papuan) ancestry in each individual 
genome. The adjusted f3 statistics display a genetic gradient that separates 
western and eastern Aboriginal Australian populations. However, we 
find no differences between Papuan population samples in their level of 
Aboriginal Australian affinity (Kruskal–Wallis test, P = 0.083). Horizontal 
lines correspond to ± 1 standard error. b, Genetic affinities between a 
Papuan highlander genome and Aboriginal Australians and Papuans. 
The Papuan highlander sample MAR01 from the Marawaka area was 
arbitrarily chosen as a reference point for this analysis. f3 values were 
adjusted for recent admixture as in a. All Aboriginal Australian groups 
display a similar level of Highland Papuan affinity (with the exception 

of three outlier individuals from the north-eastern WPA and CAI 
populations: WPA06, WPA05 and CAI10, the latter two of which are 
known to have at least one parent with origins in Papua New Guinea or the 
Torres Strait Islands). While some differences between groups are actually 
statistically significant (Kruskal–Wallis test, P =  0.0002, after removing 
the three outliers), which could be consistent with, for example, low 
levels of Papuan gene flow into some Aboriginal Australian groups (see 
Supplementary Information sections S06 and S07), we caution that some 
of these differences are probably due to imperfect adjustment for Eurasian 
admixture (the adjusted f3 is highest in the WCD population, which has 
the least Eurasian admixture). Horizontal lines correspond to ± 1 standard 
error. c, MSMC analyses. Linear interpolation through the midpoints of 
the time intervals of the relative cross coalescence rate estimates from 
MSMC25 using pairs of individuals including one HGDP-Papuan and one 
other individual as indicated. We used CAI01, PIL06, WCD01, WON03 
and an ECCAC sample for this analysis (see Supplementary Information 
section S08 for details). The MSMC results were scaled using a mutation 
rate of 1.25× 10−8 per generation per site as suggested in ref. 41 and a 
generation time of 29 years corresponding to the average hunter–gatherer 
generation interval for males and females42.
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Extended Data Figure 3 | Introgressed archaic sites and putative 
Denisovan and Neanderthal haplotypes. a, Distribution of per individual 
number of putative introgressed sites from archaic humans. The number 
of Neanderthal-specific introgressed sites increases from Europe to 
Australia, and then decreases in Amerindians, which is consistent with 
recurrent Neanderthal (or Neanderthal-related archaic) gene flow during 
the expansion into Eurasia. Our results are thus indicative of several pulses 
of Neanderthal gene flow into modern humans, as inferred previously48–50. 
We note, however, that the apparent high levels in Neanderthal-specific 
introgressed sites in Australo-Papuans can be explained by the expected 
number of misclassified Neanderthal introgressed sites resulting from 
the shared ancestry with Denisovans (see Supplementary Information 
section S10 for details). b–e, Putative Denisovan (PDH) and Neanderthal 
haplotypes (PNH). The putative haplotypes correspond to clusters (four 
or more SNPs spanning at least 4 kb) of heterozygous or homozygous 

genotypes in complete linkage disequilibrium (‘diplotypes’) that are 
potentially the result of Neanderthal or Denisovan admixture. Those 
diplotypes are homozygous ancestral in 10 Africans, homozygous derived 
in the Denisovan for the PDH (respectively Neanderthal for the PNH), 
homozygous ancestral in the Neanderthal for the PDH (respectively 
Denisovan for the PNH), and with the derived allele segregating in all 
other contemporary non-African humans (see Supplementary Information 
section S11 for details). We report the average number of the PDHs and 
PNHs (b), the correlation between the estimated amount of Australo-
Papuan ancestry (see Fig. 2b, Extended Data Fig. 1, Supplementary 
Information section S05) and the number of identified PDHs for each 
Australian sample (c), the sum of the lengths (d) and the average length (e) 
of the PDHs and PNHs per individual for worldwide populations included 
in our reference panel (see Supplementary Information section S03).
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Extended Data Figure 4 | Out of Africa: admixture graphs based on 
D-statistics and MSMC analyses. a, Admixture graphs representing 
some of the topologies considered for the two waves and one wave Out of 
Africa models assuming Denisovan admixture. All topologies are identical 
except for the coloured lineages representing Australo-Papuans (green), 
Neanderthal (Nea, orange) and Denisovan (Den, blue). The graphs differ 
in (1) the number of OoA events, and (2) the number of Neanderthal 
admixture pulses. Png, HGDP-Papuan. b, Sum of squared errors between 
the observed D-statistics and the expectations for each quartet in the graph 
involving the chimpanzee as an outgroup for each of the admixture graphs 
shown in a and the corresponding four without Denisovan admixture. 

Each point is the result of the optimization procedure with different 
starting points. See Supplementary Information section S09 for details. 
c, MSMC analyses. Relative cross coalescence rate (CCR) estimates from 
MSMC25 for pairs of individuals including one African sample (Yoruba, 
Dinka and San) and one other sample from Eurasia, as indicated in the 
legend. d, Simulation study to assess the effect of archaic admixture on the 
CCR rates. Relative CCR estimated for data simulated under a simple two-
population divergence model where one of the populations admixed at 
different rates with an archaic population. See Supplementary Information 
section S08 for details.
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Extended Data Figure 5 | Inferred deleterious mutations. a, Box plot 
of the number of derived homozygous sites per individual for worldwide 
populations that are predicted to be deleterious. Deleteriousness of SNPs 
was inferred using genomic evolutionary rate profiling (GERP) rejected 
substitution scores. Derived alleles with a rejected substitution score larger 
than 2 were considered to be deleterious, see Supplementary Information 
section S11. b, c, Average rejected substitution score per individual 
calculated across heterozygous sites (b), and derived homozygous sites (c). 

Each coloured symbol corresponds to estimates from a single individual. 
Homozygosity is calculated as the number of derived homozygous sites 
divided by the number of sites at which an individual carries at least 
one copy of the derived allele. Solid lines show the linear regression of 
homozygosity against average rejected substitution score per individual for 
non-African modern humans. Dashed lines indicate the 95% confidence 
interval for the linear regression. See Supplementary Information S11 for 
details.
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Extended Data Figure 6 | Effective population size changes over time. 
a, MSMC analyses. Population size estimates from MSMC for pairs of 
individuals from several populations within and outside of Australia. 
For each run, we used two individuals from each population, that is, 
four haplotypes in each run. MSMC results were scaled as in Fig. 3. 
b, Bayesian skyline plots (BSP) calculated from the mtDNA genome 

sequences, showing the effective population size estimates over time when 
considering either groups from northeastern Australia (CAI, WPA) or 
groups from southwestern Australia (ENY, NGA, WCD, WON). Solid 
lines are the estimates, dashed lines are the corresponding 95% credible 
intervals (see Supplementary Information section S12).
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Extended Data Figure 7 | See next page for caption.
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Extended Data Figure 7 | Genetics mirrors geography and languages. 
a, b, Procrustes analyses of the first two dimensions of a classical 
multidimensional scaling (MDS) analysis of the Aboriginal Australian 
genome sequences (autosomes). We considered two cases: an analysis 
including all variants (a), or only the variants remaining after genomic 
regions of putative recent European and East Asian origin are ‘masked’ 
(b, Supplementary Information section S06). Both MDS plots have been 
rotated towards the best overlap with geographic sampling locations as 
defined by Procrustes analysis51. In each plot, the arrows indicate the 
error of the MDS coordinates towards the assigned population sampling 
geographic coordinates. We find that the genetic relationships within 
Australia mirrors geography, with a significant correlation for both 
cases, that is, rGEN,GEO = 0.59, P <  0.0005 for all variants and even higher 
(rGEN,GEO = 0.77, P < 0.0005) for the masked data. We find using the 
bearing correlogram approach that the main axis of genetic differentiation 
in the masked Aboriginal Australian genomes is at angle = 65° 
compared to the equator, that is, in the southwest to northeast direction 
(Supplementary Information section S13). c, d, Correspondence between 
genetics and linguistics. Unrooted neighbour-joining FST-based genetic 
tree (cladogram). Weir and Cockerham FST distance was computed 

between the Aboriginal Australian populations after masking the Eurasian 
tracts. Statistical robustness of each branch was estimated by means of a 
bootstrap analysis (1,000 replicates, Supplementary Information section 
S05). d, Bayesian phylogenetic tree for the 28 different Pama–Nyungan 
languages represented in this sample (from ref. 13, see Supplementary 
Information section S15). Posterior probabilities are also indicated. Note 
that one language group can be shared by different Aboriginal Australian 
groups. The linguistic tree was built with BEAST52. e–g, Gene flow across 
the continent. e, Mantel non-parametric r (estimating the goodness of 
fit between genetic differentiation and connectivity) versus ratios of 
resistance of inland to coastal nodes, showing a peak at 1.7. f, Best fit 
of pairwise population genetic differentiation, FST (computed between 
the nine Aboriginal Australian groups after masking Eurasian tracts 
(Supplementary Information section S06)), versus pairwise connectivity 
based on the environment (estimated as resistance) when moving inland 
is 1.7 times harder than moving along coastal nodes. g, Gene flow across 
the Australian landscape, quantified as the cumulative current for pairwise 
connections among Aboriginal Australian groups (black circles), with 
larger current (warmer colours) representing greater gene flow.
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Extended Data Figure 8 | European, East Asian and Papuan genomic
tracts in Aboriginal Australians. a, Distribution of the tracts assigned to 
Aboriginal Australian (WCD), Papuan, East Asian or European ancestry 
for 58 unrelated non-WCD Aboriginal Australian samples. Most of the 
shorter tracts were of Papuan origin, suggesting that a large fraction of 
the Papuan gene flow is much older than that from Europe and East Asia, 
consistent with a Papuan influence spreading slowly from northeastern 
to southwestern Australia by ancient migration. b, Corresponding scatter 

plot with fitted line of per-individual variance in Papuan tract length 
versus geographic distance from WCD, the latter calculated using the 
great-circle distance formula for pairs of individual GPS coordinates. 
Papuan tract distribution showed a strong and significant correlation with 
distance from WCD (r = 0.64; P < 1 × 10−5), with ‘younger tracts’ (that is,
with a larger variance) closer to New Guinea and ‘older tracts’ (that is, with 
a smaller variance) closer to WCD. This is also consistent with continuous 
Papuan gene flow spreading from the northeast.
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Extended Data Table 1 | Whole genome sequence depth of coverage, haplogroup and language assignments for the Aboriginal Australian 
samples

* The depth of coverage (DoC) is the average number of reads covering every position in the genome (hg19) after duplicate removal (see Supplementary Information section S03).
†The average depth of coverage on the mitochondrial genome (mtDNA) is 3,484 ±1,515 (mean ±  s.d.) and haplogroups were called with haplogrep (http://haplogrep.uibk.ac.at/) and haplofind 
(https://haplofind.unibo.it/), see Supplementary Information section Supplementary Information section S12 for details and references.
‡The average depth of coverage on the Y chromosome (Ychr) is 28.88 ±  4.5 (mean ±  s.d.). Haplogroup assignment was performed with an in-house script that matched our SNPs with the classification 
provided in ISOGG version 10.08, see Supplementary Information section Supplementary Information section S12 for details and references.
§Language group with which the speaker self-identifies, or to which they were assigned. Where more than one language is given, speakers either identified with more than one group, or they could not 
be assigned to a single group with certainty.
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Extended Data Table 2 | Selection scan in Aboriginal Australians

Top 10 peaks of differentiation from genome scans of all Aboriginal Australians combined (All) and two Aboriginal Australians subgroups living in different ecological regions in Australia.
* RefSeq protein coding gene with exon boundary near to windowed-PBSn1 peak.
†Genomic position (hg19) of SNP with highest value of PBSn1 within 200 Mb of the top window.
‡Distance between SNP and the nearest exon boundary of nearest gene.
§PBSn1 statistic for top SNP.
¶FST statistics at top SNP for each comparison within the PBSn1 calculation.
#Please see Supplementary Information section S16 for references.
* RefSeq protein coding gene with exon boundary near to windowed-PBSn1 peak.



Ohana’s application on
Danish genetic history

I participated in a study of the Danish population’s genetic history, in which
approximately 800 students from 36 Danish high schools took part. In the
early stage of this project, I used a range of web technology to retrieve and
visualize data and analysis results stored at 23andme, a California-based per-
sonal genomics and biotechnology company. It involved several programming
languages and various APIs: Python, C#, PHP, JavaScript, HTML and CSS,
OAuth 2.0, RESTful services, Google’s Maps API, Google’s Visualization API,
etc. In the later stage of this project, I helped to analyze the data using
Ohana’s admixture and population tree modules.
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Abstract 

Denmark has played a substantial role in the history of Northern Europe. Through a 

nationwide scientific outreach initiative, we collected and used genetic and 

anthropometrical data from ~800 high school students to elucidate the genetic makeup 

of the Danish population and to assess polygenic risk predictions of phenotypic traits 

in adolescents. We observed remarkable homogeneity across different geographic 

regions (e.g. average FST = 0.0002), although we could still detect weak signals of 

genetic structure (e.g. median distance between genomic relatives < 100 km). 

Denmark received substantial admixture contributions primarily from neighboring 

countries with overall influence of decreasing weight from Britain, Sweden, Norway, 

Germany and France. A Polish admixture signal was detected in Zealand coinciding 

with historical evidence of Wend settlements in the south of Denmark. We also 

observed considerably diverse demographic histories among Scandinavian countries, 

with Denmark having the smallest effective population size compared to Norway and 

Sweden. Finally, we found that polygenic prediction of self-reported adolescent 

height in the population was remarkably accurate (R2 = 0.639±0.015). The high 

homogeneity of the Danish population could render population structure a lesser 

concern for the upcoming large-scale gene-mapping studies in the country. 

Author summary 

Denmark’s genetic history has never been studied in detail. In this work, we analyze 

genetic and anthropometrical data from ~800 Danish students as part of an outreach 

activity promoting genomic literacy in secondary education. DNA analysis revealed 

remarkable homogeneity of the Danish population after discounting contributions 

from recent immigration. This homogeneity was reflected in PCA and AMOVA, but 
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also in more sophisticated LD-based methods for estimating admixture. 

Notwithstanding Denmark’s homogeneity, we observed a clear signal of Polish 

admixture in the East of the country, coinciding with historical Polish settlements in 

the region before the Middle Ages. In addition, Denmark has a substantially smaller 

effective population size compared to Sweden and Norway, possibly reflecting further 

lack of strong population structure. None of these three Scandinavian countries seems 

to have suffered a depression due to the Black Death in the Middle Ages. Finally, we 

used the students’ genetic data to predict their adult height after training a novel

predication algorithm on public summary statistics from large GWAS. We validated 

our prediction using the students’ self-reported height and found that we could predict 

height with a remarkable ~64% accuracy. 

Introduction 

In recent years, there has been an explosion of human genetic studies, which – aided 

by a variety of technological and methodological advancements – have contributed 

substantially to the characterization of patterns of intercontinental [1], intracontinental 

[2,3] and subcontinental [4] genetic variation; the reconstruction of population history 

in regions with poor/nonexistent historical records [5,6]; the study of local and global 

patterns of admixture in multiethnic societies [7]; and the study of admixture with 

other hominin species and its use in elucidating human dispersals [8,9]. 

The increased power of high-throughput genotype data and sophisticated 

computational methods, together with the diminishing cost of the former [10], has 

also boosted the emergence of single-country genomic projects in Europe [11–15] and 

the release of valuable data and results to the public [16]. Even though there is great 
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diversity in the objectives, data types and sample characteristics of these projects, all 

of them address to some extent the genetic structure of the region under study. 

In this work, we extend the collection of single-country genetic studies in Europe by 

adding a new project from Denmark – a country whose area is comparable to that of 

the Netherlands but with a three times smaller population. Unlike previous genomic 

projects involving Denmark [17,18], ours was conceived from the beginning as a 

scientific outreach initiative with benefits for the general public and our research 

objectives. We invited ~800 high school students from across Denmark to participate 

in outreach activities whose primary goal was promoting genomic literacy in 

secondary education (G. Athanasiadis, personal communication). Most participants 

donated a DNA sample, which we used to explore the extent to which recent and 

more distant historical events left their mark on the genetic makeup of the Danish 

population. 

With this work, we ultimately report back to our DNA donors the invaluable genetic 

insights we gained from analyzing the data. Our results showed remarkable 

homogeneity across different geographic regions in Denmark, though we were still 

able to detect weak signals of genetic structure. Denmark received substantial 

admixture contributions primarily from neighboring countries with overall influence 

of decreasing weight from Britain, Sweden and Norway. We also found evidence of 

considerably diverse demographic histories among the Scandinavian countries, as 

reflected in their historical effective population size. Finally, we found that height can 

be predicted with remarkable accuracy in the Danish population. 

Results 

Principal component analysis 
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To put Danes in a European genetic context, we first ran PCA on 3,858 samples from 

across Europe. In particular, we extended a previously published PCA within Europe 

[2] to include sizeable samples from Denmark, Norway and Sweden, as these were 

underrepresented in the original study. In this analysis, Denmark was represented by 

407 individuals who had all four of their grandparents born in the country. Our 

Danish samples clustered in a geographically meaningful manner along the first two 

principal axes, partially overlapping with Norwegians and Swedes, and showing close 

genetic proximity to samples from Great Britain, the Netherlands, Germany and

Poland (Figure 1A). 

We then looked for fine-scale genetic structure within Denmark by focusing the 

analysis on 131 samples who had all four of their grandparents born in just one of the 

following six regions: Capital Region; Zealand; Funen; South, Central and North 

Jutland (Figure 1B). These six groups roughly correspond to the five administrative 

regions of Denmark (we further split the region of South Denmark into South Jutland 

and Funen). After repeating PCA for Denmark, Sweden, Norway and Germany alone 

(N = 1,168), we observed no geographically meaningful clustering of the 131 samples 

(Figure 1B). This lack of strong genetic structure was also supported by the low 

average FST value between the six regions (FST = 0.0002), as estimated by PLINK 

[19] using 459,425 autosomal SNPs. To check whether structure was simply too weak 

to be visually detected, we calculated for each Danish sample the average geographic 

coordinates of their grandparents’ place of birth and regressed the resulting values on 

PC1 and PC2 eigenvectors. We repeated the procedure by gradually rotating the map 

clockwise and found a weak yet significant correlation between PC1 and latitude 

along a northwest-southeast axis at 32° (r ≈ 0.24; p < 0.001; Figure 1C). 

Chromosome painting, population clustering and admixture proportions 
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To further explore historical genetic interactions between Denmark and neighboring 

countries, we ran CHROMOPAINTER [20], fineSTRUCTURE [20] and 

GLOBETROTTER [21] to a subset of the studied populations. We used 2,745 

individuals from 13 European countries (Norway, Sweden, Finland, the Netherlands, 

Germany, Poland, Austria, Hungary, France, Belgium, Great Britain, Spain and 

Portugal) and the 131 individuals from the six geographic regions in Denmark (Figure 

1B) to calculate European admixture proportions in each of the six Danish groups. We 

used these six groups because we were unable to observe any alternative clustering

with fineSTRUCTURE: the program clustered all Danish samples in a single large 

group (data not shown), reminiscent of the single Danish group observed in a previous 

study [15]. This observation also reflects the weak genetic structure in the Danish 

population. 

After running CHROMOPAINTER and fineSTRUCTURE on the European donor 

samples, these were organized in eight major clusters: Norwegian, Swedish, Finnish, 

British, French, German, Polish and Iberian (Figure 2A). There was always one 

predominant country in the makeup of each cluster, except for the Iberian cluster, in 

which Spain and Portugal were present at almost equal proportions, and the German 

cluster, in which samples from Austria, Hungary and the Netherlands were also 

present at large numbers. We treated these clusters as ancestry components and used 

GLOBETROTTER to define their admixture contribution to each of the six Danish 

regions. 

Figure 2B shows that the Swedish, Norwegian and British clusters made the most 

substantial contribution to the ancestry profiles of all six Danish groups, jointly 

accounting for 85.09-94.38% of the total admixture. The Scandinavian component 

(Sweden and Norway) surprisingly accounted for less than half of the total admixture 
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(range: 43.45-47.54%), on a par with the British component (40.14-47.93%), which 

peaked in South Jutland. Interestingly, Sweden’s contribution (28.73-30.52%) was 

almost twice as large as Norway’s (14.34-18.45%). This difference could be 

explained by the reduced landscape connectivity between Norway and Denmark and 

the increased connectivity between Sweden and Denmark, affecting gene flow 

correspondingly. It is also striking that the German cluster had little genetic influence 

on Denmark (2.69-7.28%), despite the proximity and historically fluid borders 

between the two countries. The French component was present in all Danish regions

(3.36-7.36%) except for South Jutland. It is also worth noting that there was a small 

yet considerable contribution from the Polish component to Zealand (6.33%). Finally, 

there was no detectable contribution from the Finnish or the Iberian component to any 

of the six Danish groups. 

Ancestry component analysis 

We also estimated individual admixture proportions in the same imputed set of 12 

European countries (without Finland) and six Danish regions by applying a new 

model-based method (R. Nielsen, personal communication). For this purpose, we 

assumed that each of the European samples was the result of admixture between K = 

4 ancestral populations (i.e. ancestry components). The analysis returned an 

admixture pattern that was remarkably consistent with geography (i.e. North-South 

and East-West clines; Figure 3). In particular, we observed (i) a Southern European 

component, which was predominant in the Iberian peninsula but was also found at 

large proportions in France and Belgium; (ii) an Eastern European component, which 

was predominant in Poland but was also found at large proportions in neighboring 

countries (and notably in Scandinavia and East Denmark); (iii) a Nordic component, 

which was at higher proportions in Scandinavia yet far from being predominant; and 
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(iv) a Northwestern European component, at considerably higher proportions in 

Scandinavia and the Netherlands but also present at considerable proportions in most 

European countries (except for Iberia). Within Denmark, we observed that Zealand 

(and East Denmark in general) had a substantially larger membership to the Eastern 

European component, matching GLOBETROTTER’s signal of Polish admixture 

observed in Zealand (Figure 2B). 

Relatedness and identity by descent 

We followed up the evidence for weak genetic structure in Denmark by exploring the 

degree and the geographic distribution of relatedness among Danish samples. Using 

KING [22], we found that the vast majority of the Danish students were at best 

distantly related (4th degree or more distant), with only four pairs of individuals 

showing 2nd or 3rd degree relationships (Figure S1). Because of the inherent 

uncertainty in distinguishing between different degrees of distantly related 

individuals, we did not attempt to stratify the samples into more fine-grained 

categories by kinship coefficient. 

After establishing that most participants in our sample were either unrelated or 

distantly related (Figure S1), we examined results from BEAGLE Refined IBD [23]. 

Using total genomic length of IBD tracts as a proxy for relatedness, we traced each 

individual’s closest genomic relative within Denmark without explicitly defining the 

degree of relationship. Figure 4A shows the distribution of the geographic distance of 

each of 399 individuals from their closest genomic relative and from a randomly 

chosen sample. The distribution of the distance from the closest relative showed an 

enrichment for very short distances, i.e. less than ~50 km, as well as a median value 

of 99.3 km – significantly closer than expected by chance at 131.4 km (Mann-
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Whitney test, U = 60,997; p = 5.52×10-9). This points at a weak yet highly significant 

overall tendency for participants to live close to their genomic relatives. 

To gain more insight into the latter observation, we grouped our Danish samples into 

ranked bins by the amount of total genomic IBD shared with their closest genomic 

relative (the higher the rank the closer the relationship). We then calculated the 

median geographic distance of each participant to their closest relative within each bin 

and regressed this value against bin rank (Figure 4B) to observe a weak yet significant 

negative correlation (r ≈ -0.35; p < 0.01). This observation points out that geographic 

distance tends to be significantly shorter between individuals who share more 

genomic IBD. 

Historical effective population size 

Historical Ne showed remarkable disparity between the three Scandinavian countries 

(Figure 5). In particular, Ne in Denmark, Norway and Sweden showed a dramatic 

~273-fold, ~262-fold and ~995-fold increase over the past 150 generations 

(~4,500±300 years), following the general upward trend in Europe [24]. For most of 

this millennia-long period (until approximately the 10th Century), Ne in both Denmark 

and Sweden increased slowly in an almost indistinguishable manner. During the same 

period, Norway’s Ne presented a less steep increase and was consistently smaller than 

in the other two countries, possibly due to earlier geographic isolation. During the 

High and Late Middle Ages, Ne in Denmark remained stable, suffering an almost 

imperceptible decline as a consequence of the otherwise devastating Black Death. On 

the contrary, Ne in Norway and Sweden were not affected by the Black Death and 

showed almost parallel increase rates, even though Norway’s Ne was consistently 

smaller than Sweden’s. Finally, from the 15th Century on, Ne in Denmark started to 
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rise again at a moderate rate, whereas Ne in Norway and Sweden rose at an even 

higher rate, resulting in Norway’s Ne eventually surpassing Denmark’s. Interestingly, 

even though Denmark and Norway currently have almost identical census population 

sizes (5.614 and 5.084 million, respectively), Norway’s Ne is 1.76 times larger than 

Denmark’s. It is also worth noting that the upward trend of Denmark’s Ne was not 

impeded by other important epidemics in the recent history of the country, such as 

cholera, the Spanish flu or, more recently, polio (Figure 5). 

Polygenic prediction of height and BMI 

Polygenic risk prediction in our Danish sample was far more accurate for height than 

for BMI (Figure 6). In the case of height, we observed maximum accuracy when 

assuming infinitesimal genetic architecture and adjusting for age, sex and ten ancestry 

PCs (R2 = 0.251±0.031). When age, sex and the ten PCs were included in the model, 

the prediction rose substantially to 0.639±0.015 (p = 6.57×10-71), a fact also reflected 

in the strong and significant correlation between real and predicted height (Figure 

6A). In contrast, although the maximum accuracy of BMI prediction was also 

observed when we adjusted for age, sex and ten PCs, this was overall much poorer 

than for height (R2 = 0.106±0.037). In this case, when age, sex and ten PCs were 

included in the model, the improvement of accuracy was not as notable as for height 

(R2 = 0.195±0.034; p = 5.49×10-18), implying that BMI is only marginally affected by 

age and sex (Figure 6B). 

Discussion 

The most striking observation in this study is the high genetic homogeneity of the 

Danish population, possibly reflecting uninterrupted gene flow facilitated by the 

extended network of sea-based commerce and travelling [25], as well as the lack of 
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major geographical barriers in Denmark. It is important to point out that this 

observation should be appreciated in a historical context, as it did not entail genetic 

contributions from recent immigration: modern Danish society accommodates 

different ethnic and cultural groups [26], and this was also reflected in our sample, 

where ~4% of the participants were born in Afghanistan, China, Ethiopia, Finland, 

Germany, Greenland, Iraq, Jordan, Korea, Kosovo, the Netherlands or Zambia. This 

number went up when we looked at grandparental origin, where 14.6% of the 

participants had at least one grandparent born outside Denmark. 

The homogeneity of the Danish population was evident in the relative lack of 

population structure in the classical PCA (Figure 1B), as well as in the extremely low 

average FST value. To put this observation in context, a previous study was able to 

detect subtle population structure along a north-south axis in the Netherlands [14], a 

country of almost identical size to Denmark’s, and although we were able to detect 

significant correlation between PC1 and latitude (Figure 1C), this was admittedly 

weak. Similarly, a recent study of population structure in Great Britain [15] found that 

the average pairwise FST estimates between 30 geographic regions was 0.0007 – 3.5 

times higher than the value we report here (0.0002). 

In general, the study of admixture within the European continent is confounded by a 

well-grounded isolation-by-distance mechanism [2,3], as well as an increased 

historical complexity that renders most admixture models unrealistically simple. 

Denmark is no exception to these caveats: the Danish population has strong historical 

bonds with other Scandinavian countries, but also with Western and Eastern Europe 

via invasions, conquests and alliances that led to settlements as far as Britain, Estonia, 

the Faroe Islands, Iceland, Greenland and even Canada [25]. Even though it is 

tempting to explain the admixture proportions seen in Figures 2 and 3 as the result of 
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historical admixing events, a more judicious approach is to interpret such proportions 

as “mixture profiles” and use them for comparisons between the studied regions. 

Bearing this in mind, we see that the mixture profiles of all six Danish groups 

comprise two major ancestry components, one predominant in Scandinavia and the 

other predominant in Northwestern Europe (Figure 3). In the GLOBETROTTER 

analysis, these two components were identified as the admixture contributions from 

Sweden/Norway on one hand, and Britain on the other (Figure 2B). In regard to the 

British contribution, however, this is actually more likely to reflect admixture in the 

opposite direction, i.e. from Denmark towards Britain, as shown recently [15]. 

It is worth noting that even though the mixture profiles of the six regions in Denmark 

were overall quite similar, they differed in their membership to the Eastern European 

component. This particular component was larger in East Denmark (Figure 3) and 

was independently observed in the GLOBETROTTER analysis as a minor 

contribution from the Polish component to Zealand (Figure 2B). It is tempting to 

interpret this signal as consequence of historical Wend settlements in the broader area 

around Lolland in the southernmost part of Denmark [25]. However, because similar 

mixture profiles were also observed in Sweden and Norway (Figure 3), it is hard to 

make a distinction between isolation by distance and actual admixture. 

A weak signal of population structure was also observed when we studied the 

geographic distribution of IBD-based relatedness. The median distance to the closest 

genetic relative (99.3 km) was significantly smaller than to a randomly chosen sample 

(131.4 km), but it represents a minor effect (median difference ≈ 30 km; Figure 4A). 

In our regression analysis, we observed that this distance tended to be significantly 

smaller for pairs of individuals that were more closely related, yet the correlation was 
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overall modest (r ≈ -0.35; Figure 4B). These observations point out that genetic 

structure does exist in Denmark, even though it is very weak. 

It is also striking that Denmark, Sweden and Norway – three Scandinavian countries 

with a common historical, geopolitical, cultural and linguistic heritage – seem to 

differ considerably in their demographic history, as reflected in their historical Ne 

trajectories (Figure 5). Indeed, current Sweden-to-Norway census population size 

ratio is 1.89 – considerably close to their current Ne ratio (2.24) – implying that the 

two populations have had similar reproductive variance and population structure. On 

the contrary Denmark’s Ne seems to have increased at a consistently lower rate after 

the Middle Ages. This could be reflecting weaker reproductive dynamics in the 

Danish population or the actual lack of population structure compared to Sweden and 

Norway. 

Finally, we found that self-reported adolescent height could be predicted with 

remarkable accuracy using essentially nothing but information derived directly 

(genotypes) or indirectly (sex and ancestry) from DNA available at birth. When we 

combined SNP data with age, sex and PCA information, our prediction could explain 

more than half of the total phenotypic variance (63.9%). The remaining unexplained 

variance corresponded to a standard deviation of 5.43 cm. This means that, with 95% 

confidence, we are at most ~10.65 cm off in our prediction of adolescent height 

(Figure 6A). It is worth noting that adding age to the model did not yield significant 

improvements to the prediction accuracy of height (data not shown). This means that 

even though adolescent height may not be a perfect reflection of adult height, this was 

still a reliable measurement for the validation of the prediction. Similarly, even 

though adolescent height was self-reported and therefore potentially subject to 

inaccuracies, its strong correlation with adult height, as observed in the highly 
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significant genetic prediction accuracy, suggests that the students provided a reliable 

report of their personal data (Figure 6A). Finally, regarding the poorer prediction of 

BMI, it is worth noting that data training was carried out in adult individuals, whereas 

prediction was validated in adolescents. Improvement of the prediction as subjects 

advance in age is not an ungrounded possibility. 

In conclusion, our analysis showed that, by applying the simple criterion of 

participants having all four of their grandparents born in Denmark, we obtained a 

largely homogeneous sample with extremely low FST values among different 

geographic regions. This remarkably high homogeneity has the potential of rendering 

population structure in large-scale Danish gene-mapping studies such as iPSYCH 

(http://ipsych.au.dk/) a lesser concern, regardless of statistical advancements such as 

genomic control, PCA [28] and mixed models [29]. We also found a remarkably 

disparate demographic history in Demark compared to other Scandinavian countries – 

a fact that can also be ascribed to the high homogeneity of the population – and that 

height in adolescents could be predicted with considerable accuracy using cutting-

edge methods [30]. Lastly but not least importantly, this study stands as an example of 

how large-scale public engagement projects can generate mutual benefits for both the 

general public and the scientific community through the promotion of scientific 

knowledge. 

Materials and Methods 

Sample description 

New data:- We recruited samples under the Where Are You From? project, a large-

scale scientific outreach initiative by Aarhus University involving ~800 students from 

36 high schools from across Denmark (G. Athanasiadis, personal communication). 
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We asked participants to provide a saliva sample for DNA analysis and to answer an 

online questionnaire about family origin (their own, their parents’ and their 

grandparents place of birth) and basic anthropometrical data (e.g. self-reported height 

and weight). The institutional review board of Aarhus University approved the study. 

Because no health-related questions were asked, there was no requirement for 

additional approval by the University’s medical ethics committee. Informed consent 

was obtained either from participants themselves (age > 18 years) or their parents (age 

< 18 years). We used the 23andMe (Mountain View, CA, USA) DNA analysis service

for the genotyping of 723 participants. 23andMe uses a custom HumanOmniExpress-

24 BeadChip from Illumina (San Diego, CA, USA). After excluding duplicated single 

nucleotide polymorphisms (SNPs), applying a per-locus missingness threshold of 2% 

with PLINK v1.9 [31] and removing SNPs ambiguously mapped to the forward DNA 

strand, 517,403 unique autosomal SNPs were available for analysis. 

Additional data:- To put our study in a broader European context, we included four 

additional datasets: (i) the POpulation REference Sample (POPRES) [32]; (ii) 

Amyotrophic Lateral Sclerosis (ALS) Finland [33]; (iii) the Swedish Schizophrenia 

Study [34]; and (iv) the Norwegian Cognitive NeuroGenetics (NCNG) sample [35]. 

POPRES included 2,863 Europeans typed with the Affymetrix (Santa Clara, CA, 

USA) 500K chip. We used SMARTPCA from the EIGENSOFT v5.0.1 package [36] 

to identify and remove 25 extreme outliers from the sample. We then applied a per-

locus and a per-individual missingness threshold of 2% with PLINK and removed 

SNPs ambiguously mapped to the forward strand to create a 2,833 individuals × 

227,899 SNPs dataset. ALS Finland included 401 ALS cases and 495 controls from 

across Finland typed with three Illumina platforms (HumanCNV370v1, 

HumanCNV370-Quadv3_C and Human1M-Duov3_B). After removing all cases and 
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one extreme outlier in the control sample, as well as SNPs with genotype missingness 

> 2% and those ambiguously mapped to the forward strand, we ended up with a 494 

individuals × 314,526 SNPs dataset. Data from the Swedish Schizophrenia Study 

initially included 3,736 controls genotyped using three platforms (Affymetrix 5.0, 

Affymetrix 6.0 and Illumina OmniExpress). After filtering for 2% per-locus 

missingness and removing SNPs ambiguously mapped to the forward strand, we used 

PLINK to run principal component analysis (PCA) jointly with the data from Finland 

and identified a large proportion of Swedish samples clustering with Finish samples

(data not shown). We consequently sampled randomly 500 individuals to match 

approximately Denmark’s sample size and excluded those Swedish subjects clustering 

with the Finns from the resulting sample, ending up with a 381 individuals × 577,252 

SNPs dataset. The NCNG sample included 670 homogeneous controls from Norway 

typed with the Illumina Human 610-Quad Beadchip. We additionally filtered the data 

for 2% per-locus missingness and removed SNPs ambiguously mapped to the forward 

strand. Finally, we sampled randomly 300 individuals to match approximately 

Denmark’s sample size, leading to a final dataset of 300 individuals × 537,306 SNPs. 

Imputation 

Because SNP intersection between the five datasets was small, we carried out 

genotype imputation within each dataset separately before combining them. As 

mentioned above, we first changed DNA strand orientation of several SNPs in all five 

datasets to create a uniform forward orientation. In particular, we first used SNPFLIP 

(https://github.com/endrebak/snp-flip) to detect reverse/ambiguous SNPs, which we 

then flipped/removed with PLINK. Table S1 shows the number of SNPs that were 

flipped/removed from each dataset. We finally used liftOver from the UCSC Genome 

Browser to “lift” genome coordinates from the NCBI36/hg18 (March 2006) to the 
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GRCh37/hg19 (February 2009) assembly. This task was necessary only for POPRES, 

ALS Finland and NCNG. 

After QC checks, orientation to forward DNA strand and liftOver were accomplished, 

we used SHAPEIT v2.720 [37] to produce “prephased” haplotypes for each dataset. 

We then used these haplotypes together with the latest 1000 Genomes Phase 3 

reference panel (b37, October 2014) for the separate imputation of the five datasets 

with IMPUTE2 v.2.3.1 [38]. We carried out the imputation on 5 Mbp-long 

chromosome segments excluding centromeres in all chromosomes, as well as 

acrocentric regions in chromosomes 13, 14, 15, 21 and 22. Finally, we concatenated 

the imputed data into separate chromosomes and filtered them for “info” ≥ 0.975 with 

QCTOOL (http://www.well.ox.ac.uk/~gav/qctool/#overview). 

Principal component analysis 

We ran PCA with PLINK to examine population structure in our Danish sample. PCA 

was run on two different data combinations: (i) POPRES, Where Are You From?, 

NCNG and the Swedish Schizophrenia Study; and (ii) Where Are You From?, NCNG, 

the Swedish Schizophrenia Study and Germany from POPRES, repeating the analysis 

for both real and imputed genotypes. To avoid undesirable clustering due to extensive 

linkage disequilibrium (LD), we thinned the imputed genotypes with PLINK (using a 

window and step size of 1,500 and 150 SNPs, respectively, and r2 threshold = 0.80) 

and also removed SNPs from known high-LD genomic regions (e.g. MHC on 

chromosome 6). 

Chromosome painting, population clustering and admixture proportions 
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We used a set of recently developed LD-based methods (CHROMOPAINTER [20], 

fineSTRUCTURE [20] and GLOBETROTTER [21]) to explore fine-grain population 

structure and admixture in Denmark. These methods require a set of phased SNP data 

from “donor” (i.e. the available European samples) and “recipient” populations (i.e. 

the Danish sample). In brief, the methods detect extended multi-marker haplotypes 

across the genome, which are organized in pairwise vectors of similarity counts 

(CHROMOPAINTER). These vectors are then used by an MCMC algorithm 

(fineSTRUCTURE) to hierarchically cluster individuals into groups that are often 

geographically, linguistically and/or historically meaningful [15]. As a final step, 

admixture proportions are estimated through a multiple linear regression on the 

average proportion of DNA that each recipient copies from each of the donor groups 

(GLOBETROTTER). 

After jointly phasing 489,209 imputed autosomal SNPs across all five datasets with 

IMPUTE2, we ran CHROMOPAINTER using default options [15] on three different 

datasets: (i) Denmark alone; (ii) Europe without Denmark; and (iii) Europe and 

Denmark together. We previously ran each analysis ten times on a sample subset 

(~10% of the total number samples and only for chromosomes 4, 10, 15, and 22) to 

estimate the switch and global emission rates used by CHROMOPAINTER’s Hidden 

Markov Model algorithm. Once similarity vectors were defined in the three datasets, 

we used fineSTRUCTURE to explore clustering in recipient (dataset i) and donor 

(dataset ii) populations. For the GLOBETROTTER analysis, we merged the similarity 

matrices from datasets ii and iii and ran the program with default options described in 

more detail elsewhere [15]. 

Ancestry component analysis 
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We used a new model-based method (R. Nielsen, personal communication) to 

estimate individual admixture proportions in 13 European countries – mostly Western 

and Northern – including Denmark. In brief, the method uses the same statistical 

model as does STRUCTURE [39], FRAPPE [40], and ADMIXTURE [41] for 

admixture, and Newton’s method for optimization. After running the algorithm, we 

reported per-country admixture proportions by averaging out individual proportions 

within each country. 

Relatedness and identity by descent 

To explore relatedness in our Danish sample, we used two different methods: KING 

[22] for the initial calculation of pairwise kinship coefficients and BEAGLE Refined 

IBD [23] for the inference of DNA segments that were identical by descent (IBD) 

between pairs of individuals. We analyzed 406 individuals for whom we had 

complete information that all four of their grandparents were born in Denmark. We 

excluded from the analysis one individual from pairs of twins and siblings 

(preferentially the one with highest per-locus genotype missingness). 

Historical effective population size 

We also estimated the historical effective population size (Ne) of the Danish, Swedish 

and Norwegian populations through the combination of two IBD-based methods. In 

particular, we first applied IBDseq [42] to three datasets separately (407 Danes who 

had all four of their grandparents born in Denmark × 514,136 autosomal SNPs; 381 

Swedes who did not show resemblance with samples from Finland × 577253 

autosomal SNPs; and 300 Norwegians × 537,305 autosomal SNPs) in order to 

produce sets of pairwise IBD tracts. We then used IBDNe [24] to estimate Ne from 

the distribution of the inferred IBD tracts over the past 150 generations for each of the 
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three Scandinavian populations. To maximize power, we used the original rather than 

the imputed SNP data for this analysis. 

Polygenic prediction of height and BMI 

Apart from the characterization of population structure and demographic history in 

Denmark, an additional focus of this work has been the quantitative study of basic 

anthropometrical traits. To this end, we used the self-reported height and weight data 

from ~600 students of diverse ethnic backgrounds to perform polygenic risk 

prediction of height and body mass index (BMI) with LDpred [30], a summary 

statistic-based algorithm that models LD to improve the prediction. As training data 

for the model, we used public summary statistics from large genome-wide association 

studies of adult height [43] and BMI [44]. We first removed from our data SNPs with 

minor allele frequency (MAF) < 0.01, as well as SNPs with a MAF different from the 

one reported in the training data by a factor of 0.15. We then assessed SNP effect 

under different fractions of causal variants: p = {1, 0.5, 0.2, 0.1, 0.05}, whereby p = 1 

corresponds to the infinitesimal model [45]. As an LD reference, we used a subset of 

407 unrelated individuals (kinship coefficient < 0.05) who had all four of their 

grandparents born in Denmark. Finally, we validated LDpred’s prediction of height in 

578 individuals, as well as the prediction of BMI in 572 individuals. We calculated 

the prediction R2 (i) by adjusting for age, sex and the first ten PCs, and (ii) by actually 

including age, sex and the first ten PCs in the model. 
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Figure titles and legends 

Figure 1: (A) PCA of 105,672 imputed SNPs after merging four datasets: Where Are 

You From?, POPRES, NCNG and the Swedish Schizophrenia study without outliers 

clustering with Finland (total N = 3,858). Per-country box plots (median and 

interquartile range) of PC values were added to facilitate interpretation. Whiskers 

represent data within 1.5 times the interquartile range. IE: Ireland; ES: Spain; PT: 

Portugal; GB: Great Britain; FR: France; BE: Belgium; CH: Switzerland; NL: the 

Netherlands; DK: Denmark; DE: Germany; NO: Norway; SE: Sweden; AT: Austria; 

IT: Italy; PL: Poland; HU: Hungary; CZ: Czech Republic; HR: Croatia; RO: 

Romania; YU: Yugoslavia; GR: Greece. (B) PCA of 105,672 imputed SNPs from 

Denmark, Sweden, Norway and Germany with emphasis on the six geographic 

regions of Denmark (total N = 1,168). No clear genetic-geographic relationship was 

observed. Ca: Capital; Ze: Zealand; Fu: Funen; SJ: South Jutland; CJ: Central Jutland; 

NJ: North Jutland. (C) Correlation of PC1 and PC2 with average grandparent place-

of-birth latitude along a 360° clockwise rotation. Maximum correlation was observed 

for PC1 at 32° (r ≈ 0.24; p < 0.001). 

Figure 2: (A) fineSTRUCTURE grouping of the 2,745 European donor samples into 

eight clusters roughly corresponding to well-defined geographic locations. FIN: 

Finnish; NOR: Norwegian; SWE: Swedish; POL: Polish; GER: German; BRI: 

British; FRA: French; IBE: Iberian. Color legend at the bottom of the map shows 

different donor countries. FI: Finland. (B) GLOBETROTTER admixture proportions 

of each of the eight European clusters in the six geographic regions of Denmark. 

Neither FIN nor IBE made substantial contributions to the mixture profiles of 

Denmark. 
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Figure 3: Ancestral component analysis of 13 European countries (including six well-

defined geographic regions in Denmark shown in the inset) assuming K = 4 ancestral 

populations. Bar plot at the bottom shows per-individual membership to each of the 

four ancestral components, whereas pie charts on the map resume per-country (or per-

region for Denmark) admixture proportions. Based on their preponderance in different 

parts of Europe, we interpret the four components as (i) Southern European (blue); (ii) 

Eastern European (yellow); (iii) Nordic (green); and (iv) Northwestern European 

(blue). Note that Sealand (including the Capital Region) and Funen have higher

proportion of Eastern European ancestry, in accord with Figure 2B. 

Figure 4: (A) Distribution of geographic distance of each participant’s place of birth 

(N = 399) to that of their closest genomic relative (pink), and to that of a randomly 

chosen sample (green). Genomic relatedness was defined on the grounds of total 

genomic IBD. Arrows point at median values of the two distributions (medianrltv = 

99.3 Km; medianrand = 131.4 Km). (B) Plot of rank of genomic relatedness vs. median 

geographic distance of each participant to their closest genomic relative. We created 

57 equally-sized bins of individuals increasingly related to their closest genomic 

relative (seven individuals per bin). Alternative bin sizes also produced significantly 

negative correlations (data not shown). 

Figure 5: Change in effective population size (Ne) of the Danish, Swedish and 

Norwegian population over the past 150 generations. Shaded areas represent the upper 

and lower bounds of the 95% confidence intervals, after bootstrapping. Uncertainty in 

generation length is represented by year intervals on the x-axis, assuming that each 

generation lasts 30±2 years. Black segments represent major epidemics from the 

recent history of the Danish population and are plotted taking into account generation 

uncertainty. For more clarity, the inset shows the same graph in log-scale. 
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Figure 6: Prediction accuracy of LDpred for height (A) and BMI (B) when age, sex 

and PCA information were included in the model. 

Figure S1: Proportion of zero IBS sharing vs. kinship coefficient for 82,215 pairs of 

individuals in a sample of 406 high school students who had all four of their 

grandparents born in Denmark. The vast majority of pairs were either unrelated 

(negative kinship coefficient in the grey-shaded part of the plot) or too distantly 

related (kinship ∈ (0, 0.0221), in the red-shaded part of the plot). 
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