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Introduction 

The paper is concerned with the management of travelling to a single-source vertex with an 

optimized cost through a vertex-weighted undirected graph.  We provide a comprehensive problem 

formulation, algorithm design, and complexity analysis for this task.  We prove the correctness of 

applying a Breadth First Search algorithm, and we further optimize the algorithm by identifying and 

eliminating vertices for which the root selection is inappropriate.  After optimization, the average 

run-time is reduced, but the worst case run-time, however, still exists as ��� � ��. 

 

Problem Formulation 

Given: A function ���, 
� � ∑ ��� |��
, ��|, where � � ��, �� is a given undirected graph, 

� � � is associated with a weight ��� � � that represents a frequency of visiting �, 

� � ���, ��� is a sub-graph of �, �� � �, and �� � �, ��
, �� denotes the path from the 

root 
 to vertex � �  �� in �, and |��
, ��| denotes the length of the path ��
, �� from 


 to � in �. 

 

Sought: A set of edges and vertices �����, ����� form a tree structure ���� � �����, ����� 

���, ��, and the tree structure is rooted at the vertex 
��� such that the function 

������, 
���� � ∑ ������|��
���, �����| � ���, 
� � ∑ ���|��
, ��|, and all 
 in � 

(minimization). 

������� , 
�� � � ������|��
� , �����| 
� �� �|��
� , � �| !  ��"�|��
�, �"�| ! # !  ��$% �|��
�, �$% �| 

(1) 

In order to consider the overall optimal solution of equation (1), it would be nice if we could directly 

use the optimal solutions for all individual components, �� �|��
�, � �|, ��"�|��
�, �"�|, …,  and 

��$% �|��
�, �$% �|.  This is the problem known as the single-source shortest-path tree problem. 

There are known algorithms such as BFS to solve it.  Proving two assumptions suffices for this 

purpose of adapting these known algorithms. 

1. The individual minimal solutions for all components for equation (1) occur at the same 

time under the same conditions.  When equation (1) is optimized, all of its components 

are optimized at the same time as well.  No vertex needs to sacrifice its own shortest 

path for the overall optimization. 

2. If the first assumption is proved, the output graph ����� is still a connected graph and 

forms a spanning tree structure. 

After we proved the correctness of applying the BFS algorithm, we also optimized the algorithm by 

identifying and eliminating the vertices for which the root selection is inappropriate.  This 

optimization is demonstrated in the pseudo-code on lines 7 to 16.  We modified the tree traversal 

part of our algorithm by keeping track of the hop distances of from each vertex to a certain root.  This 

part is demonstrate on lines 17 to 47 and in particular line 32. 

Algorithm Design and Optimization Simplified Example 

  
 Input Graph 

 

  
 Candidates for Root Vertex  

 

  
 Solution for Graphs Rooted at 2 

 ∑ ���|��
, ��| � 30 

 

  
 Solution for Graphs Rooted at 3 

 ∑ ���|��
, ��| � 24 

 

  
 Solution for Graphs Rooted at 5 

 ∑ ���|��
, ��| � 21 

 

  
 Solution for Graphs Rooted at 6 

 ∑ ���|��
, ��| � 32 

 

 

Algorithm Complexity Analysis 

Time Analysis: ���� ! ���� ! ��� � �� !  ��� �  ��� � �� 

Space Analysis: � � $
" ! � � 3 !  � � $

" ! � �  �" ! 3� ! � 

JADE-BFS-ALGORITHM(Matrix M) 

1 int  maxWeight ← 0; 

2 int  solutionSum ← 0; 

3 Matrix  input ← the input adjacency M; 

4 Matrix  solution ← populate with 0; 

5 VertexNode  root ← null; 

6 Queue  candidateSet ← Ø 

7 for every  v ∈ V { 

8         if  v.getWeight > maxWeight { 

9                   maxWeight ← v.getWeight 

10         } 

11 } 

12 for every  v ∈ V { 

13         if  v.getDegree ≠ 1  or  v.getWeight = mWeight { 

14                   candidateSet.push(v); 

15           } 

16 } 

17 while  candiateSet ≠ Ø { 

18         Matrix  localSolution ← populate with 0; 

19         int  localSum ← 0; 

20         Queue  temp ← Ø; 

21         VertexNode  vroot ← candidateSet.pop; 

22         temp.push(vroot); 

23         vroot.setHops(0); 

24         for every  v ∈ V  and  v ≠ vroot { 

25                   v.setHops(∞) 

26         } 

27         while  temp ≠ Ø { 

28                 VertexNode  u ← temp.pop; 

29                 for every  v ∈ V and v ≠ vroot { 

30                         if  input.adjacent(v, u) { 

31                                 if  v.getHops = ∞ { 

32                                           v.setHops(1 + u.getHops); 

33                                           localSolution.mark(v, u); 

34                                           temp.push(v);  

35                                 } 

36                         }  

37                 } 

38         } 

39         for every  v ∈ V { 

40                 localSum ← localSum + v.getWeight × v.getHops;  

41         } 

42        if  localSum < solutionSum { 

43                 solutionSum ← localSum 

44                 solution ← localSolution 

45                 root ← vroot 

46         } 

47 } 

 


