
Optimization of Travelling Cost through a Vertex-Weighted Undirected Graph

Jade Cheng

October 2008

Introduction

The paper is concerned with the management of travelling to a single-source vertex with an

optimized cost through a vertex-weighted undirected graph. We provide a comprehensive problem

formulation, algorithm design, and complexity analysis for this task. We prove the correctness of

applying a Breadth First Search algorithm, and we further optimize the algorithm by identifying and

eliminating vertices for which the root selection is inappropriate. After optimization, the average

run-time is reduced, but the worst case run-time, however, still exists as ��� � ��.

Problem Formulation

Given: A function ���,
� � ∑ ��� |��
, ��|, where � � ��, �� is a given undirected graph,

� � � is associated with a weight ��� � � that represents a frequency of visiting �,

� � ���, ��� is a sub-graph of �, �� � �, and �� � �, ��
, �� denotes the path from the

root
 to vertex � � �� in �, and |��
, ��| denotes the length of the path ��
, �� from

 to � in �.

Sought: A set of edges and vertices �����, ����� form a tree structure ���� � �����, �����

���, ��, and the tree structure is rooted at the vertex
��� such that the function

������,
���� � ∑ ������|��
���, �����| � ���,
� � ∑ ���|��
, ��|, and all
 in �

(minimization).

������� ,
�� � � ������|��
� , �����|
� �� �|��
� , � �| ! ��"�|��
�, �"�| ! # ! ��$% �|��
�, �$% �|

(1)

In order to consider the overall optimal solution of equation (1), it would be nice if we could directly

use the optimal solutions for all individual components, �� �|��
�, � �|, ��"�|��
�, �"�|, …, and

��$% �|��
�, �$% �|. This is the problem known as the single-source shortest-path tree problem.

There are known algorithms such as BFS to solve it. Proving two assumptions suffices for this

purpose of adapting these known algorithms.

1. The individual minimal solutions for all components for equation (1) occur at the same

time under the same conditions. When equation (1) is optimized, all of its components

are optimized at the same time as well. No vertex needs to sacrifice its own shortest

path for the overall optimization.

2. If the first assumption is proved, the output graph ����� is still a connected graph and

forms a spanning tree structure.

After we proved the correctness of applying the BFS algorithm, we also optimized the algorithm by

identifying and eliminating the vertices for which the root selection is inappropriate. This

optimization is demonstrated in the pseudo-code on lines 7 to 16. We modified the tree traversal

part of our algorithm by keeping track of the hop distances of from each vertex to a certain root. This

part is demonstrate on lines 17 to 47 and in particular line 32.

Algorithm Design and Optimization Simplified Example

 Input Graph

 Candidates for Root Vertex

 Solution for Graphs Rooted at 2

 ∑ ���|��
, ��| � 30

 Solution for Graphs Rooted at 3

 ∑ ���|��
, ��| � 24

 Solution for Graphs Rooted at 5

 ∑ ���|��
, ��| � 21

 Solution for Graphs Rooted at 6

 ∑ ���|��
, ��| � 32

Algorithm Complexity Analysis

Time Analysis: ���� ! ���� ! ��� � �� ! ��� � ��� � ��

Space Analysis: � � $
" ! � � 3 ! � � $

" ! � � �" ! 3� ! �

JADE-BFS-ALGORITHM(Matrix M)

1 int maxWeight ← 0;

2 int solutionSum ← 0;

3 Matrix input ← the input adjacency M;

4 Matrix solution ← populate with 0;

5 VertexNode root ← null;

6 Queue candidateSet ← Ø

7 for every v ∈ V {

8 if v.getWeight > maxWeight {

9 maxWeight ← v.getWeight

10 }

11 }

12 for every v ∈ V {

13 if v.getDegree ≠ 1 or v.getWeight = mWeight {

14 candidateSet.push(v);

15 }

16 }

17 while candiateSet ≠ Ø {

18 Matrix localSolution ← populate with 0;

19 int localSum ← 0;

20 Queue temp ← Ø;

21 VertexNode vroot ← candidateSet.pop;

22 temp.push(vroot);

23 vroot.setHops(0);

24 for every v ∈ V and v ≠ vroot {

25 v.setHops(∞)

26 }

27 while temp ≠ Ø {

28 VertexNode u ← temp.pop;

29 for every v ∈ V and v ≠ vroot {

30 if input.adjacent(v, u) {

31 if v.getHops = ∞ {

32 v.setHops(1 + u.getHops);

33 localSolution.mark(v, u);

34 temp.push(v);

35 }

36 }

37 }

38 }

39 for every v ∈ V {

40 localSum ← localSum + v.getWeight × v.getHops;

41 }

42 if localSum < solutionSum {

43 solutionSum ← localSum

44 solution ← localSolution

45 root ← vroot

46 }

47 }

