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Abstract 
The paper is concerned with the management of travelling to a single-source 

vertex with an optimized cost through a vertex-weighted undirected graph.  We 

provide a comprehensive problem formulation, algorithm design, and complexity 

analysis for this task.  We prove the correctness of applying a Breadth First Search 

algorithm, and we further optimize the algorithm by identifying and eliminating 

vertices for which the root selection is inappropriate.  After optimization, the average 

run-time is reduced, but the worst case run-time, however, still exists as ��� � ��.  
When the worst case occurs, the algorithm steps through all vertices to examine their 

single-source-shortest-path trees and minimizes the overall visiting cost. 
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1 Introduction 
The paper is concerned with the management of travelling to a single-source vertex with an 

optimized cost through a vertex-weighted undirected graph.  This is a common investigation in real 

life, not specific to any particular organization, and many engineers have to manage this issue.  For 

example, the single source vertex could be a possible location for a residential area; the other vertices 

in the graph could be the possible locations for commercial facilities.  Each facility has a different 

frequency of visitation. Developers would need to investigate the cost of traveling from the 

residential areas to the commercial facilities before they could make any decisions regarding future 

investments.  They might need to optimize the travelling cost by selecting a residential location that 

is fairly close to most facilities.  They could also optimize the road connections between places.  

There might be a set of possible tracks where the roads could be built. The investigators would need 

to decide which roads to construct to optimization travelling efficiency. 

Hereon we present a mathematical description of the challenge presented above as a problem 

formulation, algorithm design, and complexity analysis. We make the assumption that a Decision 

Researcher with a strong mathematical background is the target reader. 

2 Preliminaries 

2.1 Problem Formulation 
We investigate the input and output of this problem set.  It is clear this problem falls into the 

category of optimization problem.  In mathematics and computer science, an optimization problem 

is the problem of finding the best solution from all feasible solutions. In mathematics, in particular, 

the term optimization refers to the study of problems in which one seeks to minimize or maximize a 

real function by systematically choosing the values of real or integer variables from within an allowed 

set.1 

An optimization problem can be represented in the following way: 

 

Given: A function �: � 	 
 from some set � to the real numbers. 

 

Sought: An element �� in � such that ����� 
 ���� for all � in � (minimization). 

 

In our problem set, the expression could be written as: 

 

Given: A function ���, �� � ∑ ���� |���, ��|, where � � ��, �� is a given undirected 
graph, � � � is associated with a weight ���� � � that represents a frequency of 

visiting �, � � ���, ��� is a sub-graph of �, �� � �, and �� � �, ���, �� denotes the 
path from the root � to vertex � �  �� in �, and |���, ��| denotes the length of 
the path ���, �� from � to � in �. 

 

                                                           
1 http://en.wikipedia.org/wiki/Optimization_problem 
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Sought: A set of edges and vertices ���� , ��� � form a tree structure ��� � ���� , ��� � 
���, ��, and the tree structure is rooted at the vertex ���  such that the function 
����� , ��� � � ∑ ����� �|����� , ��� �| 
 ���, �� � ∑ ����|���, ��|, and all � in 
� (minimization). 

 

Based on the description above, the final optimal solution is built upon the best solutions of all 

����� , �� � ∑ ����� �|���, ��� �|.  Once the best solutions of all root cases in a particular graph � 
are found, a simple comparison of all these solutions gives the overall best solution of the original 

problem.  Therefore, the Sought section above could be achieved by iteratively examining every vertex 

as the root.  Hence, the Sought section of the problem formation could be further written as the 

following. 

 

Sought: A set of edges and vertices ���� , ��� � form a tree structure ��� ! � ���� , ��� � 
in graph � � ��, ��, such that the function �"��� ! , ��# �  

∑ ����� �|����, ��� �| 
 ���, ��� � ∑ ����|����, ��| for all � in �, and a particular 
�� in �, where $ � 1, 2, 3, … , � (minimization). 

 

2.1.1 Problem formation for the branch problem 

We break down the overall optimization problem into branches problems.  The branch problem is 

described at the end of the previous section.  We write it down in a formal form: 

�"��� ! , ��# � ) ����� �|����, ��� �| 
� ���*�|����, �*�| +  ���,�|����, �,�| + - +  ���./*�|����, �./*�| 

(1) 

 

In equation (1), the values of �"�0# are givens, where 1 � 1, 2, 3, … , � 2 1.  We assign the root vertex 

with an index of 1 � 0.  This is based on the problem formation in the previous section.  Each vertex 

� �  � is associated with a weight ����  �  � that represents a frequency of visiting �, where � 

denotes the set of natural numbers. 

If there exists a minimal value of |����, �*�|, then we can calculate the minimal value of  the first 

component in equation (1), ���*�|����, �*�|.  If there exists a minimal value of |����, �,�|, then we can 
calculate the minimal value of the second term in the equation, ���*�|����, �,�|, and so on. 

Finding the individual minimal value of |����, �*�| is a problem know as the shortest-path 

problem of an unweighted, undirected graph, with a given root ��.  An unweighted, undirected, 
shortest path from 4 to � is a path of minimum weight from 4 to �.  The shortest-path weight from 4 
to � is defined as 5�4, ��  �  min9:��� ; � is a path from 4 to �D, where the edge weight is 1 for all 
edges.2  Therefore, the minimal value of |����, �*�| could be expressed as 5���, �*�.  The same logic 

                                                           
2 http://en.wikipedia.org/wiki/Shortest_path_problem 
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applies to all of the individual minimal values of |����, �*�|, |����, �,�|, … , and |����, �./*�|.  They 
could be expressed as  5���, �*�, 5���, �,�, … , and 5���, �./*� individually. 

In order to consider the overall optimal solution of equation (1), it would be nice if we could 

directly use the optimal solutions for all individual components, ���*�|����, �*�|,    
���,�|����, �,�|, … , and ���./*�|����, �./*�|.  Proving two assumptions suffices for this purpose. 

1. The individual minimal solutions for all components for equation (1) occur at the same 

time under the same conditions.  When equation (1) is optimized, all of its components are 

optimized at the same time as well.  No vertex needs to sacrifice its own shortest path for 

the overall optimization. 

2. If the first assumption is proved, the output graph ��� ! is still a connected graph and 
forms a spanning tree structure. 

If both of these assumptions are proved, the individual optimal solutions must always lead to the 

overall optimal solution for equation (1).  As discussed in the previous paragraphs, for each 

component, minimizing �"�0#F�"��, �0#F is the same problem as looking for 5"��, �0#.  The entire set 
of problems is converted to finding 5���, �*�, 5���, �,�, … , and 5���, �./*�. 

Looking for 5���, �*�, 5���, �,�, … , and 5���, �./*� is a problem know as the unweighted-

undirected-single-source-shortest-path tree problem, where � � ��, �� is a given connect graph,  
5�4, �� � min9:��� ; � is a path from 4 to �D, and �� is a given root.  In this kind of problem, we find 

shortest paths from a source vertex � to all other vertices in the graph.  The source vertex for this 
particular problem is ��. 

2.1.2 Conclusions of problem formation 

So far, we have divided the problem into sub-problems.  In order to find the minimal solution among 

all vertices, we can examine the vertices in sequence.  For each sub-problem, we further divide the 

problem into � 2 1 components.  Each component has a form of �"�0#F�"��, �0#F where $ �
1,2,3, … , �, 1 � 1,2,3, … , � 2 1.  Integer $ is used to loop over all vertices and examine the best 

solution for graphs that are rooted at each of the vertices.  Integer 1 is used to loop over all other 
vertices while examining a particular vertex as the root. 

At this point, we need to prove two assumptions (discussed below).  If we can prove the two 

assumptions, our problem is conceptually solved because there are existing, famous algorithms to 

solve single source shortest path problems with unweighted, undirected edges.  For example, the 

breadth-first search (BFS) algorithm provides a solution for this problem with a runtime of ��� +
��.   After applying the BFS, we simply need to loop over every vertex to examine the graphs rooted 

at particular vertices.  This operation adds a term of ����.  Therefore, conceptually, we have solved 
our naïve algorithm, which has a runtime of �"� � �� + ��#. 

2.2 Properties of Optimum Solutions 
Here we provide the proof for assumption 1, individual minimal solutions for all components for 

equation (1) occur at the same time under the same conditions. 
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The input is a connect graph � � ��, ��.  We need to prove that any of the vertices’ optimal 

solutions do not require other vertices to sacrifice their optimal choices.  In other words, when we 

decide a certain path is the shortest path for a certain vertex � from the root �, we need to prove that 
all other vertices that are connected through this path also obtain their shortest paths at the same 

time. 

To express this idea mathematically, we use the following expression.  For all 4, � �  �, where 
���, �� � ���, 4� + ��4, ��, ���, �� is given as the shortest path from � to �, we need to prove ���, 4� 
and ��4, �� are also the shortest paths from � to 4, and from 4 to �, respectively.  Without loss of 

equality, we can simply prove ���, 4� is the shortest path from � to 4. 
Proof of Optimum Properties 

Suppose we have a different path �’��, 4� from � to 4 that provides a shorter path than ���, 4�.  We 

derive an inequality �’��, 4� + ��4, �� H ���, 4� + ��4, ��. Since ���, 4� + ��4, �� � ���, ��, we 
further derive the inequality �’��, 4� + ��4, �� H ���, ��. 

 

Figure 1. Optimal solution for vertex �. 

Here, we observe a contradiction.  The inequality �’��, 4� + ��4, �� H ���, �� conflicts with our 
assumption that ���, �� is given as the shortest path from � to �. 

 

Figure 2. Alternative shortest-path for vertex 4. 

Therefore, we proved that the alternative path �’��, 4� from � to 4 cannot provide any shorter path 
than ���, 4�.  Therefore, ���, 4� is the shortest path from � to 4. 

Consider the entire graph �, since any individual solution of the shortest path from the given 

root to a certain vertex does not require any other vertices to sacrifice their individual best solutions, 

we can safely say that the overall optimization is the combination of the individual optimizations for 

every vertex.  Therefore, we have proved our first assumption. 
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2.3 Properties of Spanning Tree 
Here we provide the proof for assumption 2.  When the overall optimal solution of the first 

assumption occurs in equation (1), the output graph ��� !  is still a connected graph and forms a 

spanning tree structure. 

The input is a connect graph � � ��, ��.  We need to prove that after the shortest paths of all 

vertices are drawn in the graph �, the output sub-graph forms a spanning tree structure.  In other 

words, we need to prove the properties of a spanning tree hold for this sub-graph. 

In the mathematical field of graph theory, a spanning tree � of a connected, undirected graph � 
is a tree composed of all the vertices and some (or perhaps all) of the edges of �. Informally, a 

spanning tree of � is a selection of edges of � that form a tree spanning every vertex. That is, every 

vertex lies in the tree, but no cycles (or loops) are formed. On the other hand, every bridge of � must 

belong to �.3  Based on this definition, in order to prove the sub-graph is a spanning tree structure, 
we need to prove all three of the properties hold. 

Proof for Property 1: The sub-graph is a connected graph. 

Suppose the output sub-graph is an unconnected graph.  As we know the input of the problem is a 

connected graph �, so this change from connected graph to unconnected graph can happen only 

during the procedure of drawing the shortest paths.  We take in input graph �.  Based on the 
assumption 1, we put down the shortest paths for all vertices and delete all other edges that are not 

used in forming the network of the shortest paths. 

This situation implies that we delete some certain edges in order to obtain the shortest path 

network from the given root to all other vertices. 

Here we observe a contradiction.  The value of ��4, �� � ∞, if it is unconnected.  We cannot 

obtain this solution while looking for the shortest paths.  As we proved earlier, the best solution of 

this problem contains the best solutions of its sub-problems.  So regardless of whether or not ��4, �� 
is a sub-path or a full path, this is a contradiction. 

Therefore, we have proved the first property of a spanning tree.  The output sub-graph is a 

connected graph. 

Proof for Property 2: The sub-graph contains all vertices. 

Suppose the output sub-graph does not contain all vertices.  This is to say the output graph contains 

at least two sub-parts.  This configuration is clearly a contradiction with the first property we just 

proved. 

Therefore, we have proved the second property of a spanning tree.  The output sub-graph 

contains all vertices of the input graph. 

Proof for Property 3: The sub-graph does not contain cycles. 

Suppose the output sub-graph contains at least one cycle.  We denote the cycle is formed by 

��4, ��, ���, :�, and ��4, :�, where  4, �, : � �, ��4, ��, ���, :�, ��4, :� are paths contained in 
the output sub-graph, and 4, �, : are vertices within the existing cycle.  For each of these three paths, 

                                                           
3 http://en.wikipedia.org/wiki/Spanning_tree_(mathematics) 
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there might be other vertices on the same path, so the cycle could be formed with any number J of 
vertices, where J K 3. 

 

Figure 3. Configuration of cycles in sub-graphs of �. 

Let us assume ���, 4� and ���, �� are proved as the shortest paths as we described in the proof 
section for assumption 1.  Therefore, from the perspective of the root vertex �, there are two ways to 
reach :, namely ���, 4� + ��4, :� or ���, 4� + ��:, ��. 

 

Figure 4. Multiple paths from root � to vertex :. 

Here we observe a contradiction.  We should have already deleted any multi-path options while 

investigating the shortest path from the root � to all other vertices.  There should be only one path 
from the root to the certain vertex :, and this path is the shortest way to connect the root with this 

vertex.  Even if path ���, 4� + ��4, :� is the same length as path ���, 4� + ��:, ��, a correct 
algorithm of selecting the shortest path would randomly eliminate one of these two paths.  If 

��4, :� L ��4, �� + ��:, ��, the first path in the diagram above would be selected; otherwise the 

second path would be selected. 

Therefore, we have proved the third property of a spanning tree.  The output graph does not 

contain any cycles. 

2.4 Preliminary Conclusions 
Previously, we have proved our assumptions in the problem formulation, and we can now safely 

divide the problem into two parts. 
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1. We examine the vertices, one at a time, in order to find the graph rooted at a particular 

vertex.  This graph provides the overall minimal solution. 

 The overall minimal solution is a set of edges and vertices ���� , ��� � that form a tree 

structure ��� � ���� , ��� � in � � ��, ��, and the tree structure is rooted at the vertex 
���  such that the function ����� , ��� � � ∑ ����� �|����� , ��� �| 
 ���, �� �
∑ ����|���, ��| for all � in �, and all � in �. 

2. We search for the single source shortest path for the graph rooted at a chosen vertex.  In 

other words, we convert the problem of looking for the minimal solution for equation (1) 

into looking for the minimal solution for equation (2). 

��"��� ! , ��# � )|����, ��� �| 
� |����, �*�| + |����, �,�| + - +  |����, �./*�| 

(2) 

 As we proved the correctness of this conversion, we can safely plug in the numbers of 

equation (2) into equation (1) once the solution of equation (2) is found. 

We also examined the runtime of this naïve algorithm in the problem formulation section.  Since we 

can solve the single-source-shortest-path problem of graphs with unweighted undirected edges at a 

runtime of ��� + �� using well-known tree traversal algorithms, such as the BFS algorithm, we can 

further solve our problem with a runtime of ��� � �� + ���. 

3 Algorithm Design 

3.1 Key Idea 
As we discussed in the previous section, the problem is now divided into two parts.  The parts are 

fairly independent from each other, and we proved the correctness of each of these two parts.  

Therefore, in order to improve the runtime of the overall algorithm, we need to consider two 

possibilities: 

1. Improving run-time performance for the tree traversal algorithm. 

2. Reducing the number of vertices to examine as root vertices. 

3.1.1 Improving Run-Time Performance for the Tree Traversal Algorithm 

This challenge is currently a well-known research topic.   As we discussed earlier, there is simple 

linear-time algorithm for BFS traversal in a graphs using dynamic programming.4  This algorithm 

keeps a set of appropriate candidate nodes for the next vertex to be visited in a FIFO queue.  

Furthermore, in order to discover the unvisited neighbors of a node from its adjacency list, it marks 

the nodes as either visited or unvisited. 

                                                           
4 T. H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-Hill, 1990. 
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Ongoing research has concluded that, unfortunately, even a massive amount of RAM is 

insufficient to significantly increase performance for large graphs on a modern PC.  Existing 

approaches are simply non-viable.  The main cause for such poor performance of this algorithm on 

massive graphs is the amount of I/O that incurs.  Remembering visited vertices needs ���� I/O in 
the worst case, and the unstructured indexed access to adjacency lists may result in ���� I/O.  
Researchers continue to work on improving the memory usage performance for BFS 

implementations.5 

These are improvements, however, regarding the space needed for Memoization algorithms in 

dynamic programming.  By improving the computational model, tree traversal implementations 

manage to optimize the usage of the memory space.  But as the run-time for the algorithm, it is still 

linear, and that is probably the best algorithm for tree traversal so far. 

Intuitively, to determine if an edge is needed in the final single source shortest path for an input 

graph, we need to access the edge at least once.  This operation would simply give a linear time 

algorithm, let alone the comparisons and queue accessing operations. 

Therefore, the tree traversal portion of the algorithm we propose runs in linear time applying 

the BFS tree traversal algorithm.  For our run-time analysis, we do not consider the memory 

allocation requirement for a particular algorithm. 

The naïve BFS algorithm runs at ��� + �� for all kinds of graphs.  For this implementation, only 

a connected graph is considered as valid input.  We can, therefore, further differentiate the higher 

and lower terms in this analysis.  As we know, for the worst case run-time analysis, the lower term is 

thrown away, and only the higher terms are kept in the final equation. 

In this case, a connected graph requires the number of edges to be at least the number of 

vertices minus one.  The input is also an undirected graph, so the upper bound of the number of 

edges is, therefore, quadratic to the number of vertices.  This case occurs when the input graph is a 

complete graph.  We can express this relationship in a mathematical form: 

� 
 � 
 � � �� 2 1�
2  

It is clear that � could be the lower term in the analysis ��� + ��.  � could be at most the same as �.  
Ether � is a lower term of � or � is the same as �.  � could be omitted in the final analysis.  

Therefore, we have a BFS tree traversal algorithm with a run time of ���� for any kind of connected 
graph input. Therefore our naïve algorithm could be written as ��� � ��. 

��� + �� � ���� 
��� � �� + ��� � ��� � �� 

 

3.1.2 Reducing the Number of Vertices to Examine as Root Vertices 

The run-time performance of our algorithm would improve if we could eliminate some vertices as 

possible candidates for the root.  To observe an increase in performance, we would need to be able to 

                                                           
5 Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov. Improved external memory BFS implementations 
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examine and eliminate some vertices using an algorithm faster than ��� � ��.  If that is possible, we 
would, therefore, be able to improve our overall algorithm. 

Based on these thoughts, we propose one possible way to improve this part of the algorithm.  

We do not have to examine the sub-problems that are rooted at leaf vertices, where the roots do not 

have the greatest vertex weights.  If this proposal is proved to be correct, we can skip this kind of leaf 

vertices and examine only the remaining.  In order to prove this proposal, we need to prove the 

following two assumptions: 

1. A sub-graph rooted at a leaf vertex with a degree of one can never provide the overall 

minimal solution if its vertex weight is not the greatest in the input graph.  This can be 

expressed in a mathematical form: 

��� MNOP���� , ��� � Q ��� ���� , ��� � 

) ����� �F�"�RSTU , ��� #F Q ) ����� �|����� , ��� �| 
2. We can find and mark off these kinds of leaf vertices using a operations faster than 

��� � ��. 
Proof for Assumption 1 

Suppose we have a sub-graph �’��’, �’�, where �’ denotes the vertices and �’ denotes the edges.  
Suppose �’ is generated from a input graph � � ��, ��, where � denotes the vertices in � and � 
denotes the edges in �.  Suppose �’��’, �’� and vertex � consist the solution of our problem for the 

input � � ��, ��.  Suppose leaf vertex � is the root of tree �’��’, �’�.  We also suppose �V  is not the 
greatest vertex weight in all of the vertices. 

 

Figure 5. Input graph � � ��, ��. 

 

Figure 6. Solution graph �’��’, �’� rooted at vertex �. 
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Therefore the solution can be expressed in a mathematical form: 

����, �� � ) ����|���, ��| 
� �* � �* + �, � �, + - + �./, � �./, + �WTVS X � 1 

(3) 

According to the problem formulation, the summation of �� � �0  for �’ rooted at � is the smallest of 

all possible �� � �0  for graphs rooted at other vertices.   This expressed in a formal form is: 

�V��’, �� � �* � �* + �, � �, + - + �./, � �./, + �WTVS X � 1 

  ���YXZSV , �YXZSV� � ) ����|���YXZSV , ��| , for all possible �YXZSV . 

At the same time we can calculate another set of numbers.  If we choose the parent vertex of the leaf 

vertex to be the root instead of �, we have a summation of: 

�WTVS X��’, �_�`Ja� �  ) ����F�"�WTVS X, �#F 
� �* � ��* 2 1� + �, � ��, 2 1� + - + �./, � ��./, 2 1� + �V � 1 

(4) 

Note that equation (3) and equation (4) are solutions for two different roots on the same sub-graph.  

The form of the summation also looks very similar.  In order to get to the leaf root, all other vertices 

need to go through the parent vertex.  If we choose the parent vertex to be the root, all other vertices 

take one less step to get to the root. 

Here we observe a contradiction.  By comparing equation (3) and equation (4), we can see that 

equation (4) always provides a smaller summation based on our assumptions in the first paragraph 

of this proof. 

��4_a$bJ �3� 2  ��4_a$bJ �4� � �* + �, + - + �./, + �WTVS X 2 �V 

Since we supposed that �V is not the greatest vertex weight of all vertices, at least one of ��, where 
$ � 1, 2, … , � 2 2, is larger that �V.  Therefore �� 2 �V is a positive value.  A positive value plus a 
series of positive values gives a positive value.  Therefore ��4_a$bJ �3� 2  ��4_a$bJ �4� always gives 
a positive value.  The summation of equation (4) always provides a smaller overall value. 

Therefore, we have proved that if the leaf vertex does not have the greatest vertex weight, 

graphs rooted at its parent vertex always provide better solutions compared to graphs rooted at the 

leaf vertex.  In other words, if the leaf vertex does not have the greatest vertex weight, it can never be 

chosen as the root.  We do not have to examine this kind of leaf vertices if we can detect them. 

Proof for Assumption 2 

In order the find and mark off these kinds of leaf vertices, we need to do two things.  First, we need 

to find the leaf vertices.  Second, we need to determine if the leaf vertex has the greatest vertex 

weight in this graph.  These two operations are fairly independent. 
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1. Looking for leaf vertices can be done by simply going through all vertices in the adjacency 

list and determine if a certain vertex is of more than one degree.  This takes ���� time. 

2. Determining if the leaf vertex has the greatest vertex weight can be done by simply going 

through all vertices and record the vertex with the greatest vertex weight. This also takes 

���� time. 

Therefore, in order to decide which vertices are the ones that can never be chosen as the root, we can 

simply go through all vertices and pick up the ones with a degree of one.  Within the same loop, we 

can also record the vertex with the greatest vertex weight.  After this loop, we can check to see if the 

vertex with the greatest weight is one of the leaf vertices.  If it is not, then the set of leaf vertices is 

kept the same.  If it is, then this vertex is removed from the set because, at this point, it is unknown 

whether or not this vertex should be chosen as the root.  After these operations, we are left with two 

sets of vertices, and one of them contains vertices that can never be chosen as the root.  We would, 

therefore, examine vertices in the other set. 

So far, we have proved the second assumption that the operation to determine and mark off the 

vertices that can never be chosen as the root takes shorter time than ��� � ��.  It takes ���� time. 

3.1.3 Summary of the algorithm optimization 

Let us use a simple example to summarize the key ideas of the algorithm optimization.  In the simple 

input graph below, we will use the vertex weights to name the vertices. 

 

Figure 7.  Simple input graph. 

Vertex # Degree Weight 

4 1 4 

2 2 2 

3 4 3 

1 1 1 

5 3 5 

6 1 6 
 

The algorithm proceeds as follows. 

1. Examine the vertices and determine the ones that can never be chosen as the root. 

 In this case, the candidate vertices that can never be chosen as the root (leaf vertex set) are 

as follows: 
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Vertex # Degree Weight 

4 1 4 

1 1 1 
6 1 6 

 

 And the candidate vertices that require further examination are as follows: 

Vertex # Degree Weight 

2 2 2 
3 4 3 

5 3 5 
 

2. Determine which vertex has the greatest weight.  If it is in the leaf vertex set move it to the 

other set.  If it is not in the leaf vertex set, then leave the two sets with no change. 

 Vertices that can never be chosen as the root (leaf vertex set without the heaviest vertex) 

are as follows: 

Vertex # Degree Weight 

4 1 4 
1 1 1 

 

 And vertices that need further examination are as follows: 

Vertex # Degree Weight 

2 2 2 
3 4 3 
5 3 5 
6 1 6 

 

We have only four vertices to check, and we know that the final solution will be a graph rooted at one 

of these four vertices. 

 

Figure 8.  Vertices that need further examination. 

Now, we loop through vertices, 2, 3, 5, and 6.  For each of them, we use a BFS to find the single 

source shortest path tree rooted at the particular vertex and calculate the summation for 

equation (1). 

The tree traversal algorithm proceeds as follows: 
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1. This is the best solution for graphs rooted at vertex 2. The solution is ���, �� �
∑ ����|���, ��| � 4 � 2 + 3 � 1 + 1 � 2 + 5 � 1 + 6 � 2 � 30. 

 

Figure 9.  Solution for graphs rooted at vertex 2 

2. This is the best solution for graphs rooted at vertex 3. The solution is ���, �� �
∑ ����|���, ��| �  4 � 1 + 2 � 1 + 1 � 1 + 5 � 1 + 6 � 2 � 24. 

 

 

Figure 10.  Solution for graphs rooted at vertex 3 

3. This is the best solution for graphs rooted at vertex 5. The solution is ���, �� �
∑ ����|���, ��| �  4 � 2 + 2 � 1 + 1 � 2 + 3 � 1 + 6 � 1 � 21. 

 

Figure 11.  Solution for graphs rooted at vertex 5 

4. This is the best solution for graphs rooted at vertex 6. The solution is ���, �� �
∑ ����|���, ��| � 4 � 3 + 2 � 2 + 1 � 3 + 3 � 2 + 5 � 1 � 32. 
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Figure 12.  Solution for graphs rooted at vertex 6 

After looping over all possible candidates that were selected at the beginning, we simply determine 

the best solution from this local solution, and that will be the best overall solution.  For this example, 

the solution is a tree structure rooted at vertex 5, which is shown is Figure 9. 

3.2 Pseudo Code for the algorithm 
In this algorithm, we need to use several data structures for input, output, and temporary data 

storage.  These data types include a first in first out queue, a fixed-size matrix (Matrix), and a 

VertexNode object, which stores the properties of each vertex. 

The queue implemented by this application, Queue, needs to support the standard queue 

operations.  In the pseudo code we call them push and pop, where push takes a parameter of a 

VertexNode. 

The matrix object needs to support at least two operations.  The method 

f_a�$�. $gh_�i`j��*, �,� checks if the corresponding spot of these two input vertices is marked, 

and it returns a Boolean type.  The method f_a�$�. f_�i��*, �,� marks the corresponding spot in 

the matrix of the input vertices. 

The VertexNode is a fixed-size object.  It contains three fields, the weight of the vertex, the 

degree of the vertex in the input graph, and the hop of this vertex to a certain root vertex.  The object 

needs to provide accessors to all three fields and one mutater, setHops, to update the hop property.  

We also have a fixed size array of VertexNode.  � denotes the size of the array. 
 

JADE-BFS-ALGORITHM(Matrix M) 

1 int  maxWeight ← 0; 

2 int  solutionSum ← 0; 

3 Matrix  input ← the input adjacency M; 

4 Matrix  solution ← populate with 0; 

5 VertexNode  root ← null; 
6 Queue  candidateSet ← Ø 

7 for every  v ∈ V { 

8         if  v.getWeight > maxWeight { 

9                   maxWeight ← v.getWeight 
10         } 
11 } 

12 for every  v ∈ V { 
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13         if  v.getDegree ≠ 1  or  v.getWeight = mWeight { 

14                   candidateSet.push(v); 
15           } 
16 } 

17 while  candiateSet ≠ Ø { 
18         Matrix  localSolution ← populate with 0; 

19         int  localSum ← 0; 

20         Queue  temp ← Ø; 

21         VertexNode  vroot ← candidateSet.pop; 

22         temp.push(vroot); 
23         vroot.setHops(0); 

24         for every  v ∈ V  and  v ≠ vroot { 
25                   v.setHops(∞) 
26         } 

27         while  temp ≠ Ø { 
28                 VertexNode  u ← temp.pop; 

29                 for every  v ∈ V and v ≠ vroot { 
30                         if  input.adjacent(v, u) { 

31                                 if  v.getHops = ∞ { 

32                                           v.setHops(1 + u.getHops); 
33                                           localSolution.mark(v, u); 
34                                           temp.push(v);  
35                                 } 
36                         }  
37                 } 
38         } 

39         for every  v ∈ V { 

40                 localSum ← localSum + v.getWeight × v.getHops;  
41         } 

42        if  localSum < solutionSum { 

43                 solutionSum ← localSum 

44                 solution ← localSolution 

45                 root ← vroot 

46         } 
47 } 

3.3 Correctness Proof 
The correctness of lines 1 to 16 is proved in the algorithm design section, Key Idea part 2.  We proved 

the assumption that by eliminating the leaf vertices that do not have the greatest vertex weight 

improves the overall performance of the algorithm.  After this optimization, the algorithm has a 

better average expectation run-time. 

The correctness of using BFS single source shortest path tree as a solution of our problem is 

proved in the problem formulation section.  We proved two assumptions.  We proved that to 

optimize the overall summation of equation (1), we simply need to optimize its components.  None 
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of the vertices need to sacrifice their shortest paths in order to generate the overall smallest 

summation of equation (1).  We also proved that the output of components optimization for 

equation (1) is a connected graph.  Therefore we proved that the problem can be converted into a BFS 

single source shortest path tree problem. 

The correctness of the BFS search consists of two parts.  We need to prove the output distance 

correctly exists.  We also need to prove that the output path for each vertex is the shortest path 

possible.  There are many literatures of the proof of BFS tree traversal.  We provide a simple one 

here. 

1. Prove that BFS algorithm outputs the correct path from the root to a certain vertex. 

 This is an obvious observation since the child vertices are always derived from the parent 

vertices, and the parent vertices are always derived from the grandparents, which are one 

more step closer to the root vertex.  If any of these links are broken, the loop at line 17 

would terminate and return an unconnected graph.  So, every established path should be 

correct. 

2. Prove that BFS algorithm outputs the shortest path from the root to a certain vertex. 

 Assume that we have an output tree graph rooted at a vertex � generated using the BFS 
algorithm.  We also assume that the path from � to � going through 4 shown on the graph 
is not the shortest path.  Instead there exists an alternative path that provides an even 

shorter path from � to � going through :.  We can visualize the situation as the graph 

below: 

 

Figure 13.  The output path of BFS algorithm: ���, 4�  +  ��4, ��. 

 An alternative path is shown below. 

 

Figure 14.  Assume an alternative path ���, :�  +  ��:, ��  H  ���, 4�  +  ��4, ��. 

 Vertices 4 and : both can be the parent of vertex �.  Since going through : provides a 

shorter path, and our input graph is a undirected graph, we can learn that ���, :�  H
 ���, 4�.  This is to say that : has a shorter hop distance to the root � compare to 4. 
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 According to the algorithm, the order the vertices were pushed into the queue is based on 

the hop distance of the vertices.  Vertices that have shorter hop distances need to be 

pushed in to the queue sooner.  The feature of the queue data structure tells us that the 

elements that are pushed in sooner are also popped out sooner. 

 Here we observe a contradiction.  Vertex : has a shorter hop distance than 4.  Vertex : is 

pushed into the queue sooner than 4.  Vertex : is also popped out of the queue sooner.  

Therefore the neighbors of vertex : are examined before the neighbors of vertex 4.  If 
vertex � is connected to both : and 4, : should have marked � before 4 did.  This is a 
contradiction of the assumption that Figure 11 is the output of the BFS algorithm while 

going through : provides a shorter hop distance for � from �. 
Therefore, we proved that the BFS algorithm always gives the shortest path for a certain input graph 

rooted at a certain vertex. 

4 Computational Complexity Analysis 

4.1 Time Complexity 
The time complexity of the algorithm in section 3.2 is analyzed as follows. 

1. The loop from line 8 to line 11 simply takes ���� time.  This loop determines the heaviest 

vertex. 

2. The loop from line 12 to line 16 simply takes ���� time.  This loop builds the candidate-

vertex set for the examination of their single source shortest path trees.  The leaf vertices 

that do not have the greatest vertex weight are eliminated. 

3. In the worst case, the outer loop from line 17 to line 47 takes ���� time.  The worst case 

happens when there are no leaf vertices or there is only one leaf vertex and it is the 

heaviest vertex at the same time.  If this case occurs, we need to examine the single source 

shortest path tree for all of the vertices.  Since we cannot eliminate the possibility of this 

situation, such as when the input is a complete graph, we cannot promise a faster worst-

case run-time compare to the naïve algorithm. 

4. The loop from line 24 to line 26 takes ���� time.  The vertices that are not the current 

chosen root are assigned a hop value as infinite after this loop. 

5. The loop from line 27 to line 38 takes ���� time.  Every vertex that is not the root vertex is 

pushed into the temporary queue once. 

6. The loop from line 29 to 37 takes ��k� time, where k denotes the degree of a certain 

vertex.  The vertices are poped off from the temporary queue one after the other.  After 

popping out each one of the vertices, we mark its unmarked neighbors.  The number of 

unmarked neighbors is at most the number of degree of this particular vertex. 
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7. Combining 5 and 6, the overall run-time from lines 5 to line 6 is ����  �  ��k�, which 
equals ����. 

8. The loop from line 39 to 41 takes ���� time.  After we updated the hop value of all vertices 

after the BFS tree traversal, we loop over all vertices and sum up the value of their weights 

multiplied by their hop value.  This is the local minimal solution for our problem.  It is the 

local output of equation (1). 

9.  Combining 3, 4, 7, and 8, the overall worst-case run-time from line 17 to line 47 takes 

��� � ��.  The reason of the conversion is based on the consideration that � is a lower 
term compare to � in a connect graph as we discussed earlier. 

���� � "���� +  ����# � �"� � �� +  ��# �  ��� � �� 
10. Combining 1, 2, and 10, the overall worst-case run-time of this algorithm is ��� � ��.  We 

omit the terms from 1 and 2 because ���� +  ���� compared to ��� � �� is a much lower 

term. 

���� +  ����  +  ��� � ��  �  ��� � �� 
We can consider everything else takes constant time locally. 

Although the worst-case run-time of this algorithm is the same as the naïve application of the 

BFS tree traversal, the average expectation is dramatically increased.  We managed to use a fast 

operation to reduce the size of the problem at the beginning of the algorithm.  In the example of the 

previous section, we examined only 4 out of 6 vertices by applying this algorithm. 

On the other hand, we cannot eliminate the possibility of graphs with no leaf graphs.  Our 

algorithm cannot promise a faster output for all kinds of input.  Therefore, the worst case analysis is 

still ��� � ��. 

4.2 Space Complexity 
As we discussed earlier, dynamic programming is used for the algorithm.  The program maintains a 

certain amount of data while computing.  This data is stored in abstract data types that do not impair 

the performance of the algorithm. 

4.2.1 Input space requirement 

For our algorithm, we need a source matrix to store the adjacency relationships between vertices of 

the input graph � � ��, ��.  This matrix takes � � .
, space.  It stores TRUE or FALSE depending on 

whether the two vertices are connected.  Since the input graph is an undirected graph, the matrix is 

symmetric divided into two halves by the diagonal from top-left to the right-bottom.  Therefore, we 

need only half of the full matrix to store this adjacency relationship information. 

Then, we need an array type to store the properties of each of the vertices.  The array has � 
elements.  Each element stores a created abstracted data type VertexNode.  Within this data type, we 

keep three fields, the weight of this vertex, the degree of edges for this vertex, and the hop distance 

from the vertex to a certain chosen root vertex.  The first field is immutable.  The second field, also 
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immutable, indicates the degree of edges in the input graph.  The third field is a mutable field that 

keeps track of how many hops away a vertex is from a certain root at a certain time for this particular 

vertex.  Therefore, this VertexNode type of array takes a space of � � 3. 
Therefore, the overall space requirement for the input of our problem is 

� l� � �
2 + � � 3m 

4.2.2 Output space requirement 

The output of this algorithm is an adjacent matrix with � rows and � columns.  The matrix stores 

TRUE or FALSE depending on whether or not two vertices are connected.  This matrix is a modified 

from the input matrix.  The input matrix can be fairly full.  For example, this can occur when it is a 

connected graph.  There is only edge number upper bound, � � ./*
, .  This extreme case occurs when 

the input graph is a complete graph.  The output graph demonstrates a tree structure, so the number 

of edges is one less than the number of vertices, � � � 2 1. 
There are other data types that are used for storing the relationships of a connected graph, but 

since the input graph is stored as a matrix, it is easy for the implementation to use this same data 

type.  In addition, since we are focused on the runtime of the algorithm, we assume the memory 

performance of the machines is not a barrier.   This is contrary to the problem we mentioned in the 

beginning of the previous section.  The main barrier for BFS algorithm implementation on massive 

graphs in real life is memory performance.  The matrix also takes a pace of � � .
,. 

The output also includes an object of type VertexNode that indicates what vertex was chosen as 

root that generated the overall minimal solution.  It takes a space of ~1, which can be ignored.  
Therefore, the overall space requirement for the output of our problem is � � .

,. 

4.2.3 Memory allocation during the computation 

As we discussed earlier, the linear tree traversal algorithm requires a first in first out queue data 

structure to store the VertexNodes during the computation.  In the worst case, all of the vertices need 

to be examined.  In this case, there are no leaf vertices or there is only one leaf vertex which, at the 

same time, has the greatest vertex value.  If the worst case occurs, we need a queue of � elements to 

store the vertices.  Therefore the space requirement during the computation is �. 
4.2.4 Summary of Space Complexity 

As discussed in the three sections above, our algorithm requires � � .
, + � � 3 for the input, � � .

, 
for the output, and � for the temporary space during computation.  These three parts are fairly 

independent.  The overall space requirement for our algorithm is: 

� l� � �
2 + � � 3m +  � l� � �

2m + ���� �  ��� � � + � � 3 + �� � ���,� 
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4.3 Comparison with Naïve Brute Force Algorithm 
The brute force algorithm compares all possible combinations of a tree structure that can be formed 

from the input graph � � ��, ��.  For each generated tree structure, the algorithm loops over all 

vertices and computes the summations for equation (1).  Therefore, for each generated tree 

structure, the algorithm gets a set of possible solutions.  Then, it compares these summations.  Only 

the smallest one is kept as the solution for this particular tree structure.  By repeating this process on 

every tree structure generated from the input graph, the algorithm gets a set of possible solutions for 

all sub-graph tree structures. Then, it compares these summations, which are the best solutions for 

the tree structures.  The smallest summation at this step is the minimal summation for equation (1) 

for the problem.  The corresponding tree structure and the root vertex constitute the solution for the 

problem. 

4.3.1 Comparison of Space Complexity 

The space requirement for brute rorce algorithm is slightly different from our algorithm.  The input 

still requires a � � .
, adjacent matrix and a � � 3 array of VertexNode.  The output still requires a 

� � .
, adjacent matrix and one VertexNode, which can be ignored.  The difference is that no 

temporary storage is needed while computing because brute force algorithm does not use dynamic 

programming.  It repeats the duplicate computation if it is needed. 

4.3.2 Comparison of Time Complexity 

The worst case running time for brute force algorithm is clearly exponential.  To determine the 

possible tree structures in a given input graph, the algorithm needs to examine a combination of 

op./* sub-graphs.  Some of them form tree structures and some of them may form disconnected 

graphs.  To examine if they are connected, we can use BFS, so this give a op./* � �� +  ��, which is in 
this case op./* � �. 

Then, the algorithm needs to go through all sub-graphs that form tree structures.  Let us call 

this loop 1.  It takes op./* time because there are this many tree graph in the worst case.  Within each 

sub-graph the algorithm need to loop through all vertices assuming that every one of them can be 

chosen as the root.  Let us call this loop 2.  It takes � time because every vertex needs to be checked.  

For each of the chosen roots, the algorithm needs the loop through all other vertices to calculate the 

summation for equation (1).  Let us call this loop 3.  It takes � 2 1 time because the root weight is 

not considered.  In order to determine the hop distances for each of the vertices, the algorithm needs 

to loop from the child vertex to the root vertex and count the hops.  This step has to be done 

repeatedly for every vertex because dynamic programming is not applied.  Let us call this loop 4.  In 

the worst case, this loop takes � 2 1 time because the longest possible distance from the root to 

another vertex is the number of edges in the sub-graph.  If we ignore the run-time for the 

comparison and swap, we just consider the four loops.  Therefore, the overall run-time needs to be at 

least: 

�qop./* � � +  op./* � � � �� 2  1� � �� 2 1�r 
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As we discussed earlier, we cannot eliminate the possibility of graphs with zero leaf nodes, such as a 

complete graph.  Therefore the upper bound of � is quadratic to �.  This equation provides an 
analysis of an exponential run-time. 

5 Conclusion 
This paper proposed an algorithm with ��� � �� run-time to solve the problem of minimizing the 

traveling cost to a single source vertex through a vertex-weighted, undirected graph.  The paper 

provided a comprehensive problem formulation, algorithm design, and complexity analysis for the 

problem.  We proved the correctness of applying a BFS algorithm to solve the tree traversal portion 

of this problem.  The algorithm was further optimized by eliminating the vertices that can never be 

chosen as the root.  After optimization, the average expectation of the run-time is decreased.  The 

worst-case ��� � ��, however, still exists. 


