Student: Yu Cheng (Jade) ICS 412 Homework #5 November 16. 2009

Homework #5

Exercise 8.11:	Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), how would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?		
a.	First-fit		
Answer:	212 KB → 500 KB 417 KB → 600 KB 112 KB → 288 KB 426 KB → Wait (no partition is large enough)	100 KB, 288 KB, 200 KB, 300 KB, 600 KB 100 KB, 288 KB, 200 KB, 300 KB, 183 KB 100 KB, 176 KB, 200 KB, 300 KB, 183 KB 100 KB, 176 KB, 200 KB, 300 KB, 183 KB	
Ь.	Best-fit		
Answer:	212 KB \rightarrow 300 KB 417 KB \rightarrow 500 KB 112 KB \rightarrow 200 KB 426 KB \rightarrow 600 KB	100 KB, 500 KB, 200 KB, 88 KB, 600 KB 100 KB, 83 KB, 200 KB, 88 KB, 600 KB 100 KB, 83 KB, 88 KB, 88 KB, 600 KB 100 KB, 83 KB, 88 KB, 88 KB, 174 KB	
с.	Worst-fit		
Answer:	212 KB → 600 KB 417 KB → 500 KB 112 KB → 388 KB 426 KB → Wait (no partition is large enough)	100 KB, 500 KB, 200 KB, 300 KB, 388 KB 100 KB, 83 KB, 200 KB, 300 KB, 388 KB 100 KB, 83 KB, 200 KB, 300 KB, 276 KB 100 KB, 83 KB, 200 KB, 300 KB, 276 KB	
d.	Which algorithm makes the most efficient use of m	nemory?	
Answer:	Best-fit algorithm makes the most efficient use of memory. It is the only method capable of meeting all memory requests in this case.		

Exercise 2: Consider the following page table, in which "x" means an invalid entry.

Logical	Physical
15	Х
14	Х
13	Х
12	Х
11	7
10	Х
9	5
8	Х
7	Х
6	Х
5	3
4	4
3	0
2	6
1	1
0	2

Assume a 4 KB page size. Give the physical address corresponding to the following logical addresses. All addresses are decimal values.

a. 20

Answer:	To calculate the physical address of the given logical address, when the page size is 4 KB, we have,	
	20 B < 4 KB	
	\Rightarrow logical page = 0	
	\therefore 0 logical page \leftrightarrow 2 physical page	
	$\Rightarrow 2 \ page \times 4 \ KB/page = 8 \ KB$	
	$\Rightarrow 8 KB + 20 B = 8020 B.$	
	The physical address of logical address 20 B is at physical address 8020 B.	

b. 4100

Answer: To calculate the physical address of the given logical address, when the page size is 4 KB, we have,

 $4100 B / 1000 = 4.1 KB < 2 \times 4 KB$ $\Rightarrow logical page = 1$

 $:: 1 \ logical \ page \leftrightarrow 1 \ physical \ page$

 $\Rightarrow 1 page \times 4 KB/page = 4 KB$ $\Rightarrow 4 KB + (4.1 - 4) KB = 4100 B.$

The physical address of logical address 4100 B is at physical address 4100 B.

Answer: To calculate the physical address of the given logical address, when the page size is 4 KB, we have,

 $8300 B / 1000 = 8.3 KB < 3 \times 4 KB$ $\Rightarrow logical page = 2$ $\therefore 2 logical page \leftrightarrow 6 physical page$ $\Rightarrow 6 page \times 4 KB/page = 24 KB$ $\Rightarrow 24 KB + (8.3 - 8) KB = 24300 B.$

The physical address of logical address 8300 B is at physical address 24300 B.

- **Exercise 8.18:** Consider a logical address space of 32 pages with 1024 words per page, mapped onto a physical memory of 16 frames.
 - **a.** How many bits are required in the logical address?
- Answer: The logical address requires 5 bits for the page number because there are $32 = 2^5$ of them. Then, the logical address requires 10 bits of the offset because there are $1024 = 2^{10}$ of them. So, the logical address requires a total is 15 bits.
 - **b.** How many bits are required in the physical address?
- Answer: The physical address requires 4 bits for the frame number because there are $16 = 2^4$ of them. Then, the physical address also requires 10 bits of the offset because there are $1024 = 2^{10}$ of them. So, the physical address requires a total is 14 bits.
- **Exercise 8.19:** Consider a computer system with a 32-bit logical address of 4-KB page size. The system supports up to 512 MB of physical memory. How many entries are there in each of the following?

a. A conventional single-level page table.

Answer:	$2^{11} < 4000 < 2^{12}$, so we need 12 out of 32 bit logical address for the offset. Then we have $32 - 12 = 20$ bits left for the page number. There are, therefore, $2^{20} = 1048576$ entries in a conventional single-level page table.	
b.	An inverted page table.	
Answer:	$2^{11} < 4000 < 2^{12}$, so we still need 12 out of 32 bit logical address for the offset. Then we have $32 - 12 = 20$ bits left for the page number and process id. There are, therefore, $2^{20/2} = 2^{10} = 1024$ entries in a conventional single-level page table.	
Exercise 5:	Suppose we have a computer system with a 44-bit virtual address, page size of 64 KB, and 4 bytes per page table entry.	
a.	How many pages are in the virtual address space?	
Answer:	$2^{15} < 64000 < 2^{16}$, so we need 16 out of 44 bit logical address for the offset. Then we have $44 - 16 = 28$ bits left for the page number. There are, therefore, $2^{28} = 268435456$ pages in the virtual address space.	
ь.	Suppose we use two-level paging and arrange for all page tables to fit into a single page frame. How will the bits of the address be divided up?	
Answer:	$2^{15} < 64000 < 2^{16}$, so we still need 16 out of 44 bit logical address for the offset. Since we have 4 bytes per page table entry, one page frame can fit $64 \ KB/4 \ B = 16000$ page entries. We need 14 bits, as $2^{13} < 16000 < 2^{14}$, to index into a page of the page table. Then we have $44 - 16 - 14 = 14$ bits left for the page number. $43 \ 42 \ \dots \ 30 \ 29 \ 28 \ \dots \ 16 \ 15 \ 14 \ \dots \ 0$ $ outer \ inner \ -offset- $	

Exercise 8.23: Consider the following segment table:

Segment	Base	Length
0	219	600
1	2300	14
2		
90	100	
3	1327	580
4	1952	96

	What are the physical addresses for the following logical addresses?	
a.	0,430	
Answer:	219 + 430 = 649. Segment 0 has a length of 600, which is greater than 430.	
b.	1,10	
Answer:	2300 + 10 = 2400. Segment 1 has a length of 14, which is greater than 10.	
с.	2,500	
Answer:	Illegal reference. Segment 2 doesn't have a corresponding base.	
d.	3,400	
Answer:	1327 + 400 = 1727. Segment 3 has a length of 580, which is greater than 400.	
e.	4,112	
Answer:	Illegal reference. Segment 4 has a length of 96, which is less than 112.	