Student: Yu Cheng (Jade)
ICS 675
Assignment #1
October 25, 2009

Exercise 1 Algorithm time complexity analysis

Question: What is the time complexity of the algorithm described below. Detail the answer using a

diagram, or any other useful representation.

Generator(n, symbols, s) returns array {
Pre-conditions:

nx=1

s = size of the array symbols

All(1<i<s,i<j<s, symbols[i]! = symbols[j])
#

Post-condition

All(i <j where j < size of outputs, outputs[i]!= outputs[j])

outputs = symbols;
for ie1--n—-1 {
j=0
for each elem in outputs {
for each symbol in symbols {
concatenates elem any symbol.
temp|j] = concatenate(elem, symbol);

jt++;
}
}
outputs = temp;
}
return outputs;
}
Answer: This is a brute force way to generate all possible [-mers with a length of n. The outer loop goes

from 1ton — 1. It given — 1 rounds. The inner most loop goes from 1 to the size of the array
symbols, in the context of DNA analysis, it would be 4. The middle loop execution rounds vary
as the function executes. It starts at the size of symbols, which is 4, and increases to

16, 64,256, and so on. So the time complexity of this function can be expressed as:
s's+s?-s+s3 s+ +s"ls=5243 st 45"

s?2-(s™1—-1)

s—1

s2.(s"1-1)

s—1

) = 0(s"*1) = 0(s™).

The time complexity of this given function is O (

Exercise 2 Greedy approach to motif finding

Question:

Answer:

Find the two closest sequences in a t-size input. For the selected sequences find the positions s;
and s, that optimize the Score(s, DNA). Use a greedy approach, search of the motif in the other

sequences t — 2 sequences.

The greedymotif search function firstly takes two rows and compute the best motifs for them

in a brute force way. Then, it loops through the rest of the rows. There aret — 2 of them.
Assuming that the motifs on the previous rows are already selected, algorithm finds out the best

motif on the current row and appends it to the list of the best motifs.

The starting two sequences are selected applying hamming distance in the hammingswap
function. The two sequences that have the least hamming distance are closer to each other than
any other pairs of sequences. Computing the closest sequences using hamming distance was

done in a brute force manner, which is pretty time-consuming.

/* __ */
/**

* Function searches for the starting positions of the motifs that produce the
best score on the first two rows of the DNA matrix in a brute force manner.
Then updates the starting positions on the rest of the rows assuming that
the previous motifs have been already chosen.

@param bestMotif The array of indexes to be filled in with the starting

*
*

*

*

* Select the two rows that have the least hamming distance.

*

*

& positions that give the best score according this greedy algorithm.
*

static void greedymotifsearch(int * bestMotif)
{

int * startpos;

int end, i;

end = cols - length;

/* Select the two rows that have the least hamming distance. */
hammingswap();

/* Allocate space for the aray storing the temporary starting positions. */
startpos = (int *)calloc(rows, sizeof(int));

/* Search for the best motifs on the first two rows in a Brute force way. */
for (startpos[@] = @; startpos[@] < end; startpos[0]++) {

for (startpos[1] = @; startpos[1] < end; startpos[1]++) {
if (score(startpos, 2) >
score(bestMotif, 2)) {
bestMotif[@] = startpos[@];
bestMotif[1] = startpos[1];

/* Record the starting positions of the best motifs found on the first two rows. */
startpos[@] = bestMotif[@];
startpos[1] = bestMotif[1];

/* Search the rest t-2 rows assuming the previous motifs are all selected. */
for (i = 2; i < rows; i++) {
for (startpos[i] = @; startpos[i] < end; startpos[i]++) {
if (score(startpos, i + 1) >
score(bestMotif, i + 1))
bestMotif[i] = startpos[i];

/* Record the starting position giving the best score on the current row. */
startpos[i] = bestMotif[i];

}

free(startpos);
}
/* __ */
/**

* Function conputes the hamming distances between all pairs of rows in the DNA
* matrix and records the pair that has the least hamming distance. Then

* function swaps the selected rows, minrowl and minrow2, with the first and the
* second row in the DNA matrix respectively. The updated DNA matrix's first
* two rows have the least hamming distance of all rows.
*
&/
static void hammingswap()
{

int i, j, k;
int min, minrowl, minrow2;
min = cols;

/* Search for the two rows having the least hamming distance brute forcely. */
for (i = 0; i < rows; i++) {
int distance;
distance = 0;
for (j =1+ 1; j < rows; j++) {
for (k = @; k < cols; k++) {
if (dna[i * cols + k] != dna[j * cols + k])
distance++;
}
if (distance < min) {
min = distance;
minrowl = ij;
minrow2 = j;

Question:

Answer:

/*
/**

*
*
*
*
*
*
*

*/

Function computes the score for a paticular set of motifs.
max character counts on each column that starts from the specified positions
and ends at positions that are motif-length away from the starting positions.

@param startpos The array of starting indexes in the DNA matrix.
@param rowcount The number of rows to scan to compute the score.

static int score(const int * startpos, int rowcount)

{

int j;
int total;

/* Loop lenght many columns and sum up the scores. */
total = 0;
for (j = 0; j < length; j++) {

int i;
int max;
int sum[4] = { @, @, 0, 0 };

/* Only scan specified number of sequences. */
for (i = @; i < rowcount; i++) {

char ch;

ch = dna[i * cols + startpos[i] + j];

sum[(int)ch]++;

/* Add the one with the greatest count in this column to total.

max = sum[@];
for (i = 1; i < 4; i++)

max = sum[i] > max ? sum[i] : max;
total += max;

return total;

Analyze the complexity of your new greedy motif finding algorithm 1.

In hammingswap function, we scan through the rows two times and the columns once in a
nested loop. It would take O(t? - n) time. The swaprows function (helper functions are not
copied here, please refer the source code submitted.) just loop once through the length of the

sequences. It would take O(n) time. Clearly O(t? - n) is a higher order term that defines the

time complexity of this function.

/* Swap the selected rows with the first two rows in the DNA matrix. */
swaprows (minrowl, minrow2);

It sums up the

*/

Question:

Answer:

score function is used in greedymotifsearch function. In the score function, we have a
nested loop that takes O(l - i), where [is the length of the [-mer motif, and i is the specified row

count to scan. i is upper bounded by t.

In the rest of greedymotifsearch function, we have two parts. The first part searches for the
best motif in two rows in a brute force way. It takes O[(n — [+ 1) x 21 - t] = O[lt(n —)?] =
O(n?-1-t). The second part loops through the rest of the sequences. It takes O[(t — 2) X
(n—1+1)x2l-t] =0(t?* -n-1). Apparently the first part is the higher order term that
defines the time complexity. Because n should be substantially larger than l. Normally, we
would have a lot more nucleotides on each of the sequence we are trying to analyze than the

number of samples we are dealing with. So, after hammingswap function, it takes 0(n? - [- t).

Sum them together, the original greedy algorithm portion and the hamming distance searching

portion, this algorithm is in the order of O(t? - n+mn?-1-t) = 0(n? - L - t).

Instead of choosing the closest 2 sequences from the set, select 2 sequences randomly. Repeat
the process x number of times defining x tuples (sy, 5,) of starting positions in sequence 1 and
sequence 2. Chose the most reoccurring tuple of starting positions and find the remaining

starting positions in your t — 2 sequences.

The greedymotifsearch function is the same as the previous greedy algorithm, only the
selection of the first two rows to execute is different. Instead of randomly selecting, This

algorithm implemented hamming distance to select the closest sequences of the rows.

The omitted sections are identical with the function copied above.
/* __ */
/**

*

Randomly select two rows to be the first two executed by the greedy method.

L R L

*/
static void greedymotifsearch(int * bestMotif)

{

/* Randomly select two rows and swap them into the front of the DNA matrix. */
randomswap();

* Randomly choose two rows from the DNA matrix, and swap the chosen rows, rowl

* and row2, with the first and the second row in the DNA matrix respectively.

* The updated DNA matrix's first two rows are a random selection of all rows.

*

*/

static void randomswap()

{
int rowl, row2;
/* Randomly select rowl and row2 from all rows. */
rowl = rand() % rows;
row2 = (1 + rowl + (rand() % (rows - 1))) % rows;
/* Swap the randomly selected rows with the first two rows in the DNA matrix. */
swaprows (rowl, row2);

}

/ K e o e e e e e e e e e m — — m — — — m — — m — — — — — —— — — — m — ——— — — — —— — — — m — — — — — — — —————————— — ——— */

/ * %k

*

*/

static int score(const int * startpos, int rowcount)

{

}

Question: Analyze the complexity of your new greedy motif finding algorithm 2.
Answer: The randomswap function doesn’t take any time in comparison. The entire time consumption

comes from the main routine, which is the original greedymotifsearch function. As we

decided it takes O(n? - I - t), this algorithm as a whole, therefore, takes O(n? - [- t) time.

The two algorithms are in the same time complexity order. Algorithm 2 should be faster in a
small scale inputs than algorithm 1 though, as it does not spend time searching for the first pair

of sequences to scan.

Question: What can you say about the algorithms 1 and 2? (Compare both approaches in algorithm 1 and 2
from a time complexity and qualitative standpoints) Which algorithm do you believe will do a

better job at finding the optimal motif? Do we have a guarantee for that?

Support your analysis using example of your choice. The sample sequences are generated.

a. Random DNA sample generating

Answer: In my implementation, I tested these two algorithms with randomly generated DNA matrices. I
insert a command line specified motif into all sequences in random positions. The command
line also takes a rate of mutation, from O to 1. This allows the motifs to be different from each

other by a certain ratio.

File Edit View Terminal Help

ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$./randsamp [~]
Usage: ./randsamp motif mutation-rate lines line-length seed

motif actag...

mutation-rate @.6f ... 1.0T

lines lines of output

line-length line length and maximum motif length
seed random number generator seed

ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$ l

The following example demonstrates this feature. I choose a sequence of 20 a’s to be the
original motif, and a motif mutation ratio to be 0.1 and 0.9 for the first and second execution
respectively. The DNA matrix has 15 sequences and the length of the sequences is 75
nucleotides long. In this case, I look for [-mers with size 20, of course because I'm “cheating”. I
already know the motifs. The random seed is given as 0. With the seed, I will be able to

reproduce these sequences later if I need to.

If we specify the mutation ratio to be 0.1, we can still “see” the sequences of a’s in there. While if
I specify the mutation ratio to be 0.9, the sequences of a’s are basically “disappeared”. If the
mutation ratio is as high as 0.9, the specified motifs don’t ready exist anymore. They might as
well be random nucleotide sequences. The analysis output in this case would have too low of a

score and not trustworthy anymore.

In the following screenshot, each row represents a DNA sequences and the entire standard
output represent the DNA matrix generated with the specified parameters. This output format

would be later used as the input for the greedy motif searching algorithms.

Answer:

b.

File Edit View Terminal Help
ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$./randsamp aaaaasaaaasaaaaaaaaa 0.1 15 75 @

gtcgcgtacctgtggtataagagetttggget g gaacttacccagactcccagtct
tt t cgcgcggacctctggaagacggtaagacagtctgcggaaactcataatgagg
aggcttaataacccaagtgtgacatcgttcttacggaagtaggtaatgtooct agt

taatagcagtgaaagcasaaacacaaaaataaaasagtataatcactaaaatcctgatticttatecgaagtagec
attaacagccattgtacatacctgcgcctacaaaaaaaaaaaaaasaattcgggtagacgtgggtoaggaccacc
cgcectcagetttactactatatttaatettgtgagecgattgatagtecctgcataasagaaaaaaaaaaaaact
cgttcggtttagcaaaaaaasaaaacaaaazatgaatatcttagccaaagggeagggtaatcgeagetgggteac
tgcgcgcacgttcaggtttagcccccagctagctggcagtgcaccaagtataaaaaaaaaaaaaaaaaatctgtg
cggactcgccggatcaaattgatgagaagag ggatcgtgtttgcctccgactcggacata
ctcttgtaaaacagctaatgcatctgacgtccatgtccgtr"" tccgatagactat
tacaatttgctcgtgatggaccgaaaaaaaaaaaaaaaaaaaaaacataggcatcataaactctttggegacctc
accctgtatgaaagaaaaataaaaaaaaaaggaactagttgtagegaccteccatecttaccactegtatagact
gaattcactctcgggtcgggatttgegtegtcgtgeggaaaaacaaaaaaaaaaagagectgtetetcaagecga
aaaaaaaaaacaaaaaaaaaagiggcgcaagacgagegttataacctgttagetgegttgtegacagtgtegaca
cgataaagtcggtgcctaaacgaacaagggactaggcgtgacttcgggcaaaaaaaaaaaaaaaaaactaattta
ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$

ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$

gtcgcgtacctgtggtataagagetttgggettaaggaaatagtgecaaaacgaacttacccagactcecagtect
agacgccgatgatacaggaactgttaaggaagacagtctgeggaaactcataatgagggegaageaggtctgecg
tamaacttccctgtaatggttcaattactaaaaggtagecaggaggataataaaaacagataatagcagtgaaag
cttatccgaagtagccatgatgacccgaccttgatttactaacaattaacagataatatacgaaatgtagcaatc
cggaagccgtacggacttacctactacgecctcagetttactactatatttaatatacacgtgtcaattegtace
ttgcgogttcggtitagogectgggeattataagtgtatitcagattagecaaagggeagggtaategeagetag
tcaggtttacgcctaccoccgecgacataatactagagttgtaagctaagtagattggtictgtgatgaatgttat
atcccttagagacgatacatgeatacaccgacteggacatageatetgeaggtcgatecgatetgatgetettgt
gaggcgctactagcagactataactcgatcaccgagtcctgtcgecgegatgetgetaaatttacaaaccgagag
ctcegagacgecaccttgettaaatctcagatatgataggeactgaggegaacgtggaactagtigtagegacct
gcgagggaattcactctcgggteggoatttgegtegtegtgetataacatttaaatagecggggectgtetctea
cagcasacagaaaaccigaactaagaagcataacctgttagetgegttgtegacagtgtcgacatttcaacatag
ctaggcgtgacttggeggageggeagtggcgagaccaacacccttacgtacatcatctcagaatagecaccagggg
aagctattcgaacatgasattctgttactgttatgttcagaaatcgaaaatagtggaagagataaggagtgaggt
gcatggtatgagcagtgectcaccacgacccatagttcctogaccaggactccgtactgtagecagaggtaggegat
ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$ l

ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$./randsamp aaaaasaaaasaaaasaaaa 0.8 15 75 @

Greedy Motif Searching starting with the closest sequences

Then I implemented the two greedy motif finding algorithms. In the first algorithm, hamming

distance was used to select the closest sequences of the DNA matrix. The closest two sequences

are used as the initial sequences to compute the initial best motif.

File Edit View Terminal Help

ubuntu@ubuntu:~/Desktop/675#p2/algl src$./motif
Usage: ./motif lines line-length motif-length

lines lines of standard input
line-length length of each line of input
motif-length length of motif to find

ubuntu@ubuntu:~/Desktop/675#p2/algl src$ l

In the following example, the randomly generated DNA matrix was piped into the motif finding
function as the input. We also specified the size of the DNA matrix and the length of the motif
we are looking for. Here the length of the [-mers are the same as what I've inserted into my

generated DNA sequences. Again, I'm “cheating”. I already know from the DNA generating

function parameters that what my motifs should look like.

File Edit View Terminal Help
=]
ubuntu@ubuntu:~/Desktop/675#p2/algl src$./randsamp aaaaaaaaaaaaaaaaaaaa 0.1 15 75 @ | ./motif 15 75 20
ID Index Motif
11 22 gaaaaaaaaaaaaaaaaaaa
12) gasagaaaaataaaazaaaa
3 52 taaaaaaaacaaaaaaaaaa
4 14 gcaaaaacacaaaaataaaa
5 28 taaasaaaasaaaaaaaaaa
6 51 gcataaaagaaaaaaaaaaa
7 11 gcaaaaaaaaaaaaaasaaa
8 47 gtataaaaaaaaaazaaaaaa
9 25 gaagagaaaaaigasaaaa
18 42 gaaaacaaaaaaaaaaaaaa
1 31 tasaaaaagasaaaaa@aaa
2 1 taaazaatasaaaaaaaaaa
13 37 gasaaacaaaaaaaaaaaga L
14] adaaaaaadacaaadaaaaaa
15 47 gcasaaaaaaaaaaaaaaaa =
Score: 273
ubuntu@ubuntu:~/Desktop/675#p2/algl src$ I
[~]

From the program output, we saw that DNA sequences were rearranged since the 11% and 12
sequences were decided by the hamming distance algorithm to be the closest sequences of the 15
input sequences. Then the best motif array was generated indicating the starting indexes of the
motifs found on each sequence. Also, by knowing the starting indexes and the input DNA
matrix, we were able to retrieve the exact [-mers found on each sequence. They are shown as the

third column of the output.

Apparently, by taking a low mutation ratio, 0.1, we still have most of the a’s in our [-mers. The
maximum score for the [-mers, with lengths of 20 and sample size 15, is 15 X 20 = 300. We
had 273, which should be pretty good.

In the following example we have a comparison of low and high mutation ratios. We can clearly
see the difference. First, we can really see our sequences of @’s anymore as the [-mers found on
each sequence. Then, notice that we had a bad score as the sequences found don’t really close to
each other. Because the way our scoring schema works, for a completely random comparison, we
would still get 1/4 amount of scores. In this example is would be 75. We got 150 because the
greedy algorithm is helping us to make relatively good choices rather than completely random

outputs, in which case, we would expect around 75.

Answer:

B DEERIOp 675 R P2 a1G 2IETE

File Edit View Termminal Help
[A]
ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$./randsamp aaaaaaaaaaaaaazaaaaa 0.1 15 75 @ | ./motif 15 75 20 1@
1D Index Motif
11 22 gaaaaaaacascaaaaaaas
12 9 gaaagaaacataaaaaaaaa
3 52 tanaaaaasaaaaaaaaaas
4 14 gcaaaaacacaaaaataaaa
5 28 taaaaaaasaaaaaaaaaaa
6 51 gcataaaagaaaaaaaaaaa
7 11 gcaaasaasancaaaadaaaa
8 47 gtataaaasaaaaaaaaaas
9 25 gaagagaasaasagaaaaas
10 42 gaaaacaagaaaaaaaaaaa
1 31 taaaasaagaazaaaaaaas
2 1 taaaaaataaaaaaaaaaaa
13 37 gaaaaacasaacaaaaaaga
14] aaaaaaaasacaasaaaaas
15 47 gcaaasaacancaaasaaaa
Scare: 273
ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$./randsamp aaaaaaaasaaaaaaaaaaa 0.9 15 75 @ | ./motif 15 75 20 1@
1D Index Motif
11 6 atttgcgtcgtcgtgeggtt
12 16 agctgcgttgtcgacagtgt
3 2 atgtcccttcasattcaatt
4 3 agtaccgatgatgacccgta
5 54 atctcctaggtctgcacgat
6 16 atttccaatggaatatctta
7 2 gtgacggtcgacaccaagtt
8 37 ttctgcattatggeticgta
9 5] agctcaatatcagtcctgtce
18 7 gcctgtatgatcatcteagt
1 7 acgtctggtataagagettt
2 6 aggtctccaggegecggtaa
13 35 atagcaccaggggtctcttg
14 51 acgaggggtggegeaccgge
15 9 cagtccgtactgtagcagag Tl
Score: 158 =
ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$ I
)

Greedy Motif Searching starting with a randomly selected two sequences

The second greedy algorithm implemented used a randomly selected pair of sequences to be the
first two rows algorithm execution. Since randomization is used, we need to take one extra

parameter to seed the random number generator. Also we will be able to reproduce the output.

File Edit View Terminal Help

ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$./motif T4l
Usage: ./motif lines line-length motif-length

lines lines of standard input
line-length length of each line of input
motif-length length of motif to find
seed random number generator seed

ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$ l

The same DNA matrix was used as the input data in the following example. We will be able to

compare the outputs better.

File Edit View Termminal Help

ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$./randsamp aasaasasaasaaaaaaaaa 0.1 15 75 @ | ./motif 15 75 20 1 [~]
D Index Motif

14 ¢} @daasaaaaaacaaasaaaaa
4 11 aaagcaaaaacacasaaata
3 53 daasaasaaaasadsaaaaa
2 2 @daacaataaaasaasaaaas
5 28 taasaaaaaaasaaaaaaaa
6 53 alasaagaaaaasaasaaaaa
7 12 Caaaaaaaaaasaasasaas
8 49 atasaaaaasasaasaaaaa
9 26 aagagaaaaaaagasaaaaa
18 42 gaaaacaaaaasaasaaaaa
11 23 aaasaaaaaaasaasaaaaa
12 18 aaagaaaaatasaasaaaaa
13 37 gaaaaacaaaasaasasaga
1 32 aaaaaaagaaasaasasaaa
15 47 graaaaaaaaaaaasasaaa
Score: 275

ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$./randsamp aaasasaaaasaasaaaaasa 8.1 15 75 8 | ./motif 15 75 28 2
1D Index Motif

1 33 a@asaagaaaasaasaaaag
13 38 @aamacaaaaasaasaagag
3 54 @doacaaaaaaadadaaaaag
4 17 daaacacaaaaatasaaaag
5 29 ddaaaaaaaaasaaaaaaat
6 53 atasaagaaaaaaasaaaaa
7 i3 doaacaaasaasaasaaaat
8 49 ataaaaaasaasaaaaaaaa
9 27 agagaaaaaaagaaaaaaag
10 43 aaaacaaaaaaaaaaaaaat
11 23 aaaaaaaaaaaaaaaaaaas
12 11 aagasaaataaaaasaaaag
2 2 aaaasataasaaaazaaaas
14 2 aaaaaaaacaaaaaaaaaag
15 48 Ca@azaaaasaasasaaaac -
Score: 274

ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$./randsamp aasaasasaasasaasasaa 0.1 15 75 0 | ./motif 15 75 20 3
1D Index Motif =

7 10 agcaaaaaaaaaaaaaaaaa m
13 35 cggaaaaacaaaaaaaaaaa

3 49 ccctaaaaaaaaaaaaaaaa

4 13 agcaaaaacacaaaaataaa

5 24 cgcctaaaasaaaasaaaaa

6 50 tgcataaaagasaazaaaas

1 28 ggctaaaaaaagaazaaaaa

8 46 agtatasaasasaasaaaas

=) 24 agaagagaaaasaagaaaaa

10 40 Cggaaaacaaasadsaaaaa

11 21 CQaaaaasaaasaasaaaas

12 8 tgaaagaaaaataasaaaaa

2 @ ttaacaaataasaasaaaaa

14 0 anaaaaaaaacaaasaaaaa

15 46 ggcaaaaaaaaaaazaaaaa

Score: 259 [~]

As the random seed changes the first pair of sequences selected changes. The first execution
took sequences 14 and 4 as the brute force portion of the greedy algorithm. The second
execution took sequences 1 and 13. The third execution took sequences 7 and 13. In the
example above the value of x = 3, and the best score provided was 275, which is about the same

as algorithm 1.

Also I tested the effect of different mutations ratios. The result is, of course, the same as

algorithm 1. A greater mutation ratio gives a lower score and the analysis is not trustworthy.

Answer:

File Edit View Terminal Help

ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$./randsamp aaaaasasaasaaaaasaaaa 0.1 15 75 @ | ./motif 15 75 20 1 [~]
D Index Motif

14 0 donacaaaasacaaasaaaaa
4 11 a@agcaaaaacacasaaata
3 53 adaaaaaaaaacaaaaaaaa
2 2 aaaaaatacaasaaaaaaaa
5 28 tanaaaaaaaasadaaaaaa
6 53 atasaagaaaaaaasaaaaa
7 12 caaaaaanaaaanaaaanaa
8 49 ataaaaanaaaanaaaaaaa
9 26 aagagaaaaaaagaaaaaaa
10 42 g33aacaaazaaaazaaaaa
11 23 aaaasaaaazaaaazaaaaa
12 10 aaagaaaaataaaaaaaaas
13 37 gaaaaacaaaaaaaaaaaga
1 32 33333330333333333333
15 a7 gCcaa3aaaazaanaza3aaas
Score: 275

ubuntu@ubuntu:~/Desktop/675#p2/alg2_src$./randsamp aaaaasaaaasaaaaaaaaa ©.9 15 75 @ | ./motif 15 75 20 1
1D Index Motif

ubuntu@ubuntu:~/Desktop/675#p2/alg2 src$ l

14 50 tacgaggggtggcgcaccygg

4 21 tataagaaggggagcacgag

3 19 attgaggattacataactat

2 2 gagaaggtctccaggcgecg

5 34 tatatttaatcccccccgeg

6 42 tttcagagtagatgcccctg

7 21 totaagtaataatactacac

8 13 tccggacatageatctgeag

L) 13 tatcagtcctgtegectcta

18 12 tatgatcatctcagtgggas =
11 23 gttaagataaatagccgeac

12 39 cattaagaaggcagggctga

13 25 attatcgagaatagcaccag

1 15 tataagagctttgggcttag -
15 34 cgatagtaaaccggtcccgg i
Score: 165

The randomly selected two sequences are the same because the same seed is passed in both of

the two executions. The score is much lower providing a great mutation ratio.

Which algorithm do you believe will do a better job at finding the optimal motif? Do we have a

guarantee for that?

For randomly generated DNA sequence samples, algorithm 1 doesn’t have any advantage.
Spending time looking for the closest pair did do us any good. Of course, in comparison, this
time spent looking for the closest pair of sequences is inferior than the time consumption the

main routine — greedy searching.

For random sample algorithm 1 is not any better than algorithm 2. It makes a lot of sense,
because the samples are completely random. How can we trust the selected pair to be any
substantially closer? In fact, they are not, they are just happen to be slightly closer. The way
they are close with each other doesn’t have anything to do with the motifs! Because, the motifs
are randomly mutated as well! This is, however, no t the case in real organisms. If two
organisms are closely related with each other in the context of evolution, we should expect a

overall closer target sequences and a overall closer motifs on these sequences.

So, in the real world research, under the circumstance that the researchers already know that
they are looking at some sequences that are related with each other closely, it might be beneficial

to spend time looking for the closest pair and make the best guess to start with.

On the other hand, although the greedy algorithm implementing searching for the closest
sequences might provide a good starting point, we still need to evaluate whether it worth the
time. As we saw in algorithm 2, by running it several times, we would be able to pick a pretty
good overall score. We implemented hamming distance as the quantifier of how close the
sequences are. It doesn’t cost much time, so we'll say yes, to this little extra effort. But it doesn’t
do that good of a job comparing the sequences either! It would greatly depend on the
implementation to say which is better. I imagine the second approach, algorithm 2, would be a
better choice in most cases, especially if we aren’t so sure about the phylogenetic relations of the

sequences we are looking at.

There is no guarantee for either of these two algorithms to be better than the other. Just like
there is no guarantee that either of these two algorithms provides the best option. If we are
going for a guarantee, we would take the brute force approach for all input sequences. The
reason implementing greedy algorithms is that we would rather trade optimization with time

consumption.

