Assignment 3

Student: Yu Cheng (Jade)
ICS 675
Assignment #3
Nov 23, 2009

Question:

Answer:

In this assignment, we will be assembling 22 Solexa genomic sequences using the OLC (Overlap
Layout Consensus) approach. Very close relatives to the organism from which these gragments

have been obtained have been abundantly sequenced in the past.

Using the fags.fasta file, calculate the overlap and use a graph to display the results of the
calculation. Use either blast program or the program water (from the EMBOSS suite of tools) to
carry this task.

After comparing blast and water two programs, I decided to use water for this assignment.
Water program takes a pair of sequences and returns a best local alignment. Parsing the water
output files, I can obtain the information needed to construct the graph. For each relevant pair
of sequences, the overlapping length is the edge weight, and the upstream and downstream

sequences are the source and destination nodes respectively for that edge.

In order to carry out the task of executing water programmatically, I used a python script
(analyze.py) to parse the fags.fasta file, generate all pair-wise combinations of the sequences,
execute water as a command line program on each pair of sequences, extract key information
from the water output files, filter out irrelevant pairs based on the overlapping lengths and
aligning positions. Finally, the script produces a tab delimited standard output containing all

selected alignments. Each entry of this output represents an edge in the graph.

In order to carry out the task of plotting the graph programmatically, I used yapgvb, a python
graphviz binding library, and wrote a python script (graph.py) to parse the standard input,
compute the number of vertices, and plot an edge weighted direct graph in svg format using the

layout option ‘dot’.
After carrying out the aforementioned procedures and playing with different filtering

overlapping percentages, I obtained the following graph, Figure 1. More graphs with different

cut-off thresholds will be provided in later sections for the comparison purpose.

What is the minimum overlap % you will use and why?

Answer:

Answer:

For the graph above, the filtering conditions are, a minimum overlapping cut-off of 20bp, best
local alignment starts with the first base pair of one of the two sequences. Therefore, the
minimum overlap percentage for the graph above is a proximately 20/50 = 40%. If we look at
the absolute value, this is a very high cut-off threshold, but as my analysis progress, the input
sequences are found to be highly redundant, [was able to obtain the complete sequence by even
higher cut-off threshold. Any overlap percentages lower than 40% would provide a pretty huge

graph consisting a lot of redundant edges and vertices.

I've copied two graphs with lower overlap cut-off threshold (30%) below, Figure 2. As we can
see, there are a large number of redundant edges. Of course, we can further simplify all of these
output graphs by taking away the redundant edges and vertices. We'll talk about it in the

following question.

Layout phase: using the graph fined the putative assembly(ies) of the fragments. You just need
to provide the path(s) in the graph. Note that you can reduce the complexity of the graph by

removing redundant nodes in the graph.

Like we said, the input nucleotide sequences are highly redundant. Many pair-wise
combinations provide perfect local alignments with either longer or shorter overlap. This
resulted in redundant edges and vertices. Let use sequence 1, 2 and 5 as an example. Extracting

these three vertices and edges connecting them from Figure 1, we have

We can represent this triangle relationship with the following local alignments. The two

highlighted subsequences together contain the complete sequence information of this section.

Seq 1:
Seq 2: AAAACGTACTTATCAACCAAATAAACGTA

| 1 2 overlap 29 |
Seq 2: AAAACGTACTTATCAACCAAATAAACGTA

Seq 5: GGTAAAACGTACTTATCAACCAAATAAACGTAAACACAG
| 5 2 overlap 36 |

Seq 1:
Seq 5: GGTAAAACGTACTTATCAACCAAATAAACGTAAACACAG
| 1 5 overlap 32 |

Clearly, the sequence information of sequence #5 is completely covered by sequence #1 and
sequence #2. Therefore, deleting sequence #5 would not affect retrieving the final sequence. In
other word, if an edge has to present because of the transitivity property of the partial ordering,
we don’t have to draw this edge. Similarly, the overlapping length information of sequence #1
with sequence #2 is covered by the edges weights of sequence #1 with sequence #5 and sequence
#5 with sequence #2. Therefore deleting edge 1, 2 would not affect retrieving the final sequence.
In other words, if a node presents as the middle node in a triangle relation of the partial order,

we don’t have the draw this node.

Now, we've detected what kind of edges or vertices are redundant, we can decide to delete either
the redundant edges or redundant vertices. To simplify our graph to the greatest extend,
deleting vertices is better. So, the conclusion is that we can delete the vertices in the partial
ordering graph that present as a middle node of a triangle relation.

32 32
o) fs
[5 1

36 36 deleted
71 elete

Delete the middle vertex in the triangle relation of a partial ordering graph
By doing so we basically retrieved a path from the starting node of the partial ordering graph to
the end node the graph, which contains the complete sequence information. One way of
deleting the vertices is shown in Figure 3. The dark blue colored vertices are the ones stay; the

light blued colored nodes are deleted. The orange colored edges connect the remaining vertices.

Note that there is more than one way to delete the vertices. The previously deleted vertices
would affect the triangle relations for the later vertices. Therefore, starting from different node,
we would get different output paths. For example, for the following nodes, we can either delete
vertex 5 like we did in the example path above, or we can delete vertex 2 if we evaluate from the

bottom up.

A section of the original partial ordering graph

Answer:

Answer:

32
29

Multiple ways of deleting the vertices generating multiple possible paths

Consensus: Proved an assembly view of the path suggested in the question above, If you have
obtained more than one path, suggest while of these paths is more likely and provide the
assembly view of it. The assembly view is when you provide the complete sequence supported by

the layout of the fragments.

I'll use the example path provide in Figure 3. As we discussed in the previous question, this
example path is constructed by deleting vertices that present as the middle nodes in triangle
relations of the partial ordering graph generated by the scripts. As we can see, only 9 vertices are
needed to retrieve the complete sequence. They are 1, 2, 6, 11, 14, 9, 17, 10, and 21 in this
particular order. The corresponding alignments are as below. The highlighted sections are the

subsequence that each selected sequence contributes in retrieving the complete sequence.

Selected input sequences for the example path:
Seq 1: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA

Seq 2: AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT

Seq 6: TCAACCAAATAAACGTAAACACAGTAAAGTTCATGGTTTCAG

Seq 11: CACAGTAAAGTTCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACG
Seq 11: CACAGTAAAGTTCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACG

Seq 14: CGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTC

Seq 9: AGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCCG

Seq 17: AACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCCGAAAAGTTTT

Seq 17: AACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCCGAAAAGTTTT
Seq 10: CGTAAAGGCCGTAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTG
Seq 21: ATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

Assembled Sequence:
ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTA
TTAGCGCGTCGTCGTCGTAAAGGCCGAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

What is the easiest way to validate your assembly?

There are many ways to validate the assembly. The easiest way, I think, is to pick a random
input sequence, which is not used in the path, and use the overlapping information with its
neighbor, who is a selected vertex in the path, and see if this sequence is a perfect match on that

region of the complete sequence.

I randomly selected three vertices/sequences that are not used in the example path. The

following neighbor overlapping information is extracted from the graph.

.
35 31 47

Three examples to validate the assembled sequence

Example #1: we know the alignment of sequence #14 with the complete sequence:

Assembled Sequence: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCAT - - -
Assembled Sequence (continue): GGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC: - -
Seq 14: CGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTC

Assembled Sequence (continue): GAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

We also know the local best alignment of sequence #14 with sequence #7:

Seq 14: CGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTC
Seq 7: GAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC

If our assembled sequence is correct, sequence #7 should align on the assembled sequence 35

base pairs downstream of sequence #14:

Assembled Sequence: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCAT - - -
Assembled Sequence (continue): GGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC. «
Seq 14: CGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTC

Seq 7: GAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC
Assembled Sequence (continue): GAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

It is indeed a perfect alignment. Therefore we validated the assembled sequence.

Example #2: we know the alignment of sequence #2 with the complete sequence:

Assembled Sequence: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCAT- - -
Seq 2 AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT
Assembled Sequence (continue): GGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC: - -
Assembled Sequence (continue): GAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

We also know the local best alignment of sequence #12 with sequence #2:

Seq 2: AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT
Seq 12: GGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATAAACGTAAA

If our assembled sequence is correct, sequence #12 should align on the assembled sequence 31

base pairs upstream of sequence #2:

Assembled Sequence: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCAT- - -
Seq 2: AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT
Seq 12: GGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATAAACGTAAA

Assembled Sequence (continue): GGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC- - -
Assembled Sequence (continue): GAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

It is indeed a perfect alignment. Therefore we validated the assembled sequence.

Tools

Example #3: we know the alignment of sequence #9 with the complete sequence:

Assembled Sequence: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCAT - - -
Assembled Sequence (continue): GGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC: - -
Seq 9: AGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC
Assembled Sequence (continue): GAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

Seq 9 (continue): G

We also know the local best alignment of sequence #9 with sequence #16:

Seq 9: AGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCCG
Seq 16: GCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGC

If our assembled sequence is correct, sequence #12 should align on the assembled sequence 31

base pairs upstream of sequence #2:

Assembled Sequence: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCAT - - -
Assembled Sequence (continue): GGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC: - -
Seq 9: AGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC
Seq 16: GCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGC
Assembled Sequence (continue): GAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

Seq 9 (continue): G

It is indeed a perfect alignment. Therefore we validated the assembled sequence.

Water:

Discussion:

Water program was used to carry out the task of searching for the best local alignment. The

following simple examples demonstrate its use.

I downloaded the EMBOSS package from the EMBOSS home site, and installed this tool suite on
an Ubuntu machine. I was able to run it as a command line program. It takes to input files and

output a text file. The following example demonstrate the basic usage of this program.

File Edit View Terminal Help

=]

ubuntu@ubuntu:~/Desktop/675/A3 tests$ 1s

a.txt b.txt

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat a.txt
ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA
ubuntu@ubuntu:~/Desktop/675/A3 tests$
ubuntu@ubuntu:~/Desktop/675/A3_test$ cat b.txt
AAMACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT
ubuntu@ubuntu:~/Desktop/675/A3 tests
ubuntu@ubuntu:~/Desktop/675/A3 test$ water a.txt b.txt
Smith-wWaterman local alignment of seguences

Gap opening penmalty [18.8]:

Gap extension penalty [0.5]:

Output alignment [a.water]:
ubuntu@ubuntu:~/Desktop/675/A3 tests 1s

a.txt a.water b.txt
ubuntu@ubuntu:~/Desktop/675/A3 test$ l

Graphviz:

Discussion:

Then, the user could also specify the type of output file and output file name in the command

line as well as other parameters, such as the gap opening penalty and gap extension penalty.

File Edit VWiew Terminal Help

ubuntu@ubuntu:~/Desktop/675/A3 tests 1s A
a.txt b.txt

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat a.txt
ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA
ubuntu@ubuntu:~/Desktop/675/A3 test$

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat b.txt
AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT

ubuntu@ubuntu:~/Desktop/675/A3 test$

ubuntu@ubuntu:~/Desktop/675/A3 test$ water a.txt b.txt -aformat markx1® -gapopen 10.8
-gapextend 8.5 output.txt

Smith-waterman local alignment of sequences

ubuntu@ubuntu:~/Desktop/675/A3 tests s

a.txt b.txt output.txt

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat output.txt | grep sw overlap

; sw overlap: 29

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat output.txt | grep al start

; al_start: 22

; al start: 1

ubuntu@ubuntu:~/Desktop/675/A3 test$ l

In this example, [used the same input files which contain a sequence each. I specified the output
file type to be “markx10”, the output file name to be output.txt, the gap opening penalty to be
10.0, and the gap extend penalty to be 0.5.

This example also shows the way to retrieve the useful information from the output file. In my
script, they are done differently, but these are the entries in the output files that were used to
analyze the sequence combination and filter out the irrelevant pairs. If the overlap is too short
(with high penalties), or neither of the starting positions of the alignment is 1, this pair would be
filtered out.

In this case, the overlapping length of the two input sequences is 29, which is reasonably high.
Sequence contained in a.txt should be the upstream sequence and the other one is the
downstream sequence. In other words, the edge representing this particular pair goes from

a.txt’s sequence to b.txt’s sequence and the edge weight is 29.

Graphviz program was used to carry out the task of plotting the edge weighted directed graphs

using the processed water program outputs.

I installed yapgvb, which provides python bindings to Graphviz program with an intuitive
python interface. Then [used python script to plot the graphs. Examples will be provided in the
Script-Graphs section.

Scripts

analyze.py:

Discussion:

This script parses the fags.fasta file, generates all pair-wise combinations of the sequences,

executes water on each pair of sequences, extracts key information from the water output files,

and filters out irrelevant pairs. Finally, the script produces a tab delimited standard output

containing all selected alignments

In the following example, I used a test file in the fasta format. The file contained two sequences

and there sequence names are 1 and 2. The output indicating that these two sequences are

related with a overlap of 29 base pairs and sequence 1 should be the upstream sequence,

sequence 2 should be the downstream sequence.

Desktopfﬁ?E,‘AB_tlist
File Edit View Terminal Help
ubuntu@ubuntu:~/Desktop/675/A3 test$ ls

test.fasta
ubuntu@ubuntu:~/Desktop/675/A3 test$ cat test.fasta
>1
ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA
=2
AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat test.fasta | ./analyze.py
1 2 29
ubuntu@ubuntu:~/Desktop/675/A3 tests |

We can double check this output by aligning the two sequences in the fasta format file:

Seq 1: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA
Seq 2: AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT

Indeed, we obtained a perfect alignment with an overlap length 29, starting from sequence #1 to

sequence #2. Now let’s look at a slightly more complicated input.

ubuntu@ubunku: ~/Desktop/675/A3 test

File Edit View Terminal Help
ubuntu@ubuntu:~/Desktop/675/A3 test$ ls

test.fasta
ubuntu@ubuntu:~/Desktop/675/A3 test$ cat test.fasta
=1
ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA
=2
ARAACGTACTTATCAACCARATAAACGTAAACACAGTAAAGTTCAT
=3
TCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATT
=4
GGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATAAACGTAAA

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat test.fasta | ./analyze.py

1 2 29
1 4 48
4 2 31

ubuntu@ubuntu:~/Desktop/675/A3 test$ l

graph.py:

Discussion:

In this second example, we had 4 sequences to be aligned. The output indicates that sequences
#1,# 2, #4 are related but sequence #3 is not. We double check this output by aligning these four

sequences together.

Seq 1: ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA
Seq 4: GGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATAAACGTAAA
Seq 2: AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT

Seq 3: TCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATT (not related)

Indeed, we obtained three perfect alignments, between sequences #1 and #2 with an overlap
length 29, between sequences #1 and #4 with an overlap length 48, and between seeugnecs #2
and #4 with an overlap length 31. Sequence #3, on the other hand, is not really related with
them.

This script parses the standard input, computes the number of vertices, and plots an edge

weighted direct graph in svg format using the layout option ‘dot’.

In the following example, I used the output from the last example of the previous section. As we
discussed above, sequence #1 #2 are related, #1 #4 are related, #2 #4 are related, and #3 should

not be related with any other sequences. These information should be presented in the graph.

File Edit View Terminal Help

ubuntu@ubuntu:~/Desktop/675/A3 test$ 1s 4
test.fasta

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat test.fasta | ./analyze.py

1 2 29

1 4 48

4 2 31

ubuntu@ubuntu:~/Desktop/675/A3 test$ cat test.fasta | ./analyze.py | ./graph.py
ubuntu@ubuntu:~/Desktop/675/A3 tests 1s

output.svg test.fasta
ubuntu@ubuntu:~/Desktop/675/A3 test$ l

The output.svg graph is copied as below. It indeed demonstrates the sequence aligning

information.

29 4

31

output.svg

16
17
26
31

19

19

24

22

18
7
A5 9
47 15
P9 47
1 [4
34
31 5
9 6
2 4
34
16
19 23
49
38 11
35 39
22 3 36
45 17
321 13 18
37 7
14 32 16 18
3 25
34 7 30
33
25 47
4
18 \\ 41 16
39
17 17
8
8 20
e ’//
27 10
34
18 31 6
a7 23
39| 20
12
21
9

Figure 2. Overlap cut-off 30%

18

17

Seq 1:

Seq 10:
Seq 11:
Seq 12:
Seq 13:
Seq 14:
Seq 15:
Seq 16:

Seq 17:

Seq 21:

Asmbld:

ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTA
AAAACGTACTTATCAACCAAATAAACGTAAACACAGTAAAGTTCAT
TCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATT
GGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATAAACGTAAA
GGTAAAACGTACTTATCAACCAAATAAACGTAAACACAG
TCAACCAAATAAACGTAAACACAGTAAAGTTCATGGTTTCAG
GAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCC
GTCGTCGTCGTAAAGGCCGTAAAGTTTTATCAGCATAAGATCACTGACCT
AGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCCG
CGTAAAGGCCGTAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTG
CACAGTAAAGTTCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACG
GGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATAAACGTAAA
TGGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGC
CGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTC
GAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATAAACGTAAA
GCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGC
AACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCCGAAAAGTTTT
GTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTTT
ACACAGTAAAGTTCATGGTTTCAGAAAACGCATGAGCACTAAAAATGGAC
TTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTTTAAA
ATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

ATGGAGGTGTTTTTACATGGTAAAACGTACTTATCAACCAAATATACGTAAACACAGTAAAGTTCATGGTTTCAGAAAACGCATGAGCACTAAAAACGGACGTAAAGTATTAGCGCGTCGTCGTCGTAAAGGCCGAAAAGTTTTATCAGCATAAGATCACTGACCTATCAGTGGTCTTTTTTTTGCTATAAATCATAAA

Figure 4. Overview of all sequences that aligned

