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Problem:

Answer:

Show that Z[x], the ring of polynomials with integer coefficients, is ordered but not well-ordered.

A set with a binary relation R on its elements that is reflexive, antisymmetric, and transitive is

described as a partially ordered set. The relation is a total order if for all element a, b either aRb
or bRa holds.

Two polynomials are considered to be equal (=) if and only if the corresponding coefficients for
each power of x are equal. We also define a polynomial p(x) is considered less than (<) a
polynomial q(x) if and only if a; < by, where a;, and by are the coefficients in p(x) and q(x)
respectively, and k is the largest such that the x* terms in p(x) and q(x) are different. For

example, we have the following relation.
pi(x) =8+ 2x + x?
po(x) =5+ 3x + x3

p3(x) =1+ 4x + x?

= pa(x) > p3(x) > pi(x) .

Now we can show the relation (Z[x], <) satisfies the three poset requirements. The relation is
reflexive by the equality definition. The relation is antisymmetric according to the less than
relationship described above. The relation is obvious transitive. p;(x) < p,(x) and p,(x) <

p3(x) derive p;(x) < p3(x). The relation is also a total ordering. Therefore, the ring of

polynomials with integer coefficients is ordered.

A well-order relation (or well-ordering) on a set S is a total order on S with the property that
every non-empty subset of S has a least element in this ordering. The ring of polynomials with
integer coefficients is not well-ordered because the standard ordering < of the integers, Z, is not a
well ordering. For example, the set of negative integers does not contain a least element hence
integers, Z, is not well-ordered. Since the smallest Z[x]’s would consist only one integer

coefficient, Psman = Z, where z € Z, and there does not exist the smallest integer z.



Extra: Show that Z[x], the polynomials with integer coefficients, forms a ring.

Answer: First, we show that Z[x] is an abelian group under polynomial addition. The zero polynomial,
p(x) = 0, is the additive identity. For a given polynomial p(x) = Y%, a;x’, the additive inverse
of p(x) is simply,
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Associativity is also clear.
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Second, we show that the associativity in respect to the polynomial multiplication.
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=p() - [q(x) - r()].

[p(x) - q(x)] - r(x)

Finally, we show that the polynomial multiplication operation is distributive over the polynomial

addition operation.
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= p) - [q(x) + ()] =p() - q(x) +p(x) - r(x).

In summary, we've shown that Z[x] forms an abelian group, it satisfies the multiplication
associativity law, and it multiplication operation is distributive over addition. Therefore, Z[x]

forms a ring.



