
LEGO NXT ACOUSTIC TAPE MEASURE APPLICATION

A CAPSTONE SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE

 REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE

IN

INFORMATION
&

COMPUTER SCIENCES

MAY 2011

By

成玉
Cheng, Yu

Supervisor:
Edoardo S. Biagioni, PhD

1 Abstract

The Acoustic Tape Measure (Distance) program is free and open-source software distributed with the

XO-1 computer, which was developed as part of the One Laptop Per Child (OLPC) project. The Distance

program determines the physical distance between two XOs by measuring how long it takes sound pulses

to travel between them. [1]

The Lego Mindstorms NXT is a programmable robotics kit released by the Lego Group. [2] A variety of de-

velopment strategies exist for the NXT, [3] and this project used leJOS NXJ, which is a Java-based replace-

ment firmware for the NXT microcontroller. leJOS is a tiny Java Virtual Machine that provides a subset

of the standard Java Runtime Environment (JRE) as well as a small set of classes specifically designed to

work with the NXT sensors and motors.

In this project, we studied the algorithm of the XO Distance application. We explored the hardware con-

straints and possibilities of implementing the Distance algorithm on the Lego NXT. We then implemented

this algorithm as an autonomous program running on two NXTs.

1

Contents

1 Abstract 1

2 Introduction 6

2.1 OLPC . 6

2.2 XO . 6

2.3 Acoustic Tape Measure (Distance) Program . 7

2.4 Lego Mindstorms . 8

2.4.1 Lego NXT . 8

2.4.2 NXT Programming . 9

3 Related Work 10

3.1 Acoustic Tape Measure Algorithm . 10

3.2 NXT Java Setup . 13

3.2.1 leJOS NXJ Firmware Setup . 13

3.2.2 Embedded Programming Environment . 13

3.2.3 Runtime Diagnostics . 14

3.3 NXT Sound System . 14

3.3.1 Speakers . 15

3.3.1.1 Frequency . 15

3.3.1.2 Volume . 15

3.3.2 Sound Sensor . 15

3.3.2.1 Frequency and Mode . 16

3.3.2.2 Sound Pulse Detection . 16

3.3.2.3 Distance Sensitivity . 17

3.3.2.4 Echo Influence . 18

2

4 NXT Distance Implementation 18

4.1 State Machine Design . 18

4.1.1 Client State Machine . 19

4.1.2 Server State Machine . 20

4.2 Event Timeline . 21

4.3 Program in Action . 22

4.4 Program Results . 23

5 NXT Distance Analysis and Discussions 24

5.1 Attack Time Analysis . 24

5.1.1 Attack Time vs. Pulse Durations . 24

5.1.2 Attack Time vs. Distances . 25

5.2 Attack Time Influence in the Distance Algorithm . 26

6 Conclusions 28

3

List of Figures

1 XO Computer . 6

2 Distance Activity in Action . 7

3 Distance Activity with Incorrect Placement (left) and Correct Placement (right) 8

4 Lego NXT with Sensors . 8

5 NXT-G Example Program . 9

6 Acoustic Tape Measure Algorithm . 11

7 Timelines Relevant to M1 (left) and M2 (right) . 11

8 Eclipse for leJOS . 13

9 leJOS Remote Console . 14

10 NXT Sound Sensor . 16

11 NXT DB mode vs. DBA mode . 16

12 NXT Sound Pulse . 17

13 NXT Sound Detection at Distances . 18

14 Client State Machine . 19

15 Server State Machine . 20

16 Event Timeline in an Ideal Scenario . 21

17 Event Timeline with an Occurrence of Error . 22

18 NXT Distance Program in Action . 23

19 NXT Distance Results . 23

20 NXT Average Distance Results . 24

21 NXT Sound Pulses at Different Pulse Durations . 25

22 NXT Sound Pulses at Different Distances . 25

23 NXT Attack Time Comparison . 26

24 NXT Attack Time Effect . 27

4

List of Tables

1 Sugar Activity Examples . 7

2 NXT Specs . 9

3 Description for Symbols used in the Algorithm . 10

4 Basic Hardware Requirement for the Distance Implementation 14

5 Basic Hardware Requirement for Multiple Participants . 15

6 Description for Symbols used in the Attack Time Comparison Chart 26

7 Description for Symbols used in the Attack Time Effect Chart 26

5

2 Introduction

2.1 OLPC

OLPC is a project aiming to create educational opportunities for the world’s poorest children by provid-

ing each child with a rugged, low-cost, low-power, connected laptop with content and software designed

for collaborative, joyful, self-empowered learning. It is believed that the educational situation can be im-

mediately improved by transferring the responsibility of learning directly to the children. When children

are given access to the world’s information they may learn in collaboration with one another. Thus, the

need to rely on a complex infrastructure, or teachers to obtain an education is eliminated.[4] The OLPC

project’s current focus is on the development, construction, and deployment of the XO-1 laptop and its

successors.

2.2 XO

The OLPC XO computer, shown in Figure 1, is an inexpensive sub-notebook computer. The XO was de-

signed as a learning tool and built especially for children in developing countries, living in some of the

most remote environments. [5] It is about the size of a small textbook. It has built-in Wi-Fi and Bluetooth

and a unique screen that is readable under direct sunlight for children who go to school outdoors. It is

durable, functional, and energy-efficient. [6]

Figure 1: XO Computer

The OLPC project with its XO-1 computers is regared as one of the major factors that led top computer

hardware manufacturers to begin creating low-cost laptop computers, known as Netbooks, for the con-

sumer markets. [7] Soon after the introduction of the OLPC, developing countries were given a much

larger choice of Netbook vendors, such as Dell, Acer, and HP.

6

XOs run the Sugar Learning Platform, and their applications are called Sugar Activities. There are about

160 Activities available for XOs and 14 of them are pre-installed. Available XO Activities have a wide range

of usage from education, social networking, and entertainment.[8] Some examples are shown in Table 1.

Activity Name Activity Description

BROWSE Web browser

DISTANCE Measure distance between XOs

PIPPY Python Programming

RECORD Video and audio capture

TERMINAL Activity version of the Sugar terminal

WRITE Word processor

Table 1: Sugar Activity Examples

2.3 Acoustic Tape Measure (Distance) Program

The Distance Activity is a pre-installed XO Activity. It measures physical distances using sound pulses.

Two XO computers are needed to use this activity. Both XOs must be connected to the same shared net-

work. When the activity is started on one computer, it sends invitations to all neighboring computers.

Once the second computer accepts the invitation, both XOs start to provide an option to begin measur-

ing distances. Figure 2 shows the activity screen when it’s in action.

Figure 2: Distance Activity in Action

The application performs well within a range of approximately 10 meters. When the XOs do not face each

other, however, the measurements are inaccurate. In this case, both XOs display synchronized readings,

7

those readings fluctuate greatly and are inaccurate. Figure 3 shows the incorrect and correct ways of using

the Distance Activity.

Figure 3: Distance Activity with Incorrect Placement (left) and Correct Placement (right)

2.4 Lego Mindstorms

Lego Mindstorms, shown in Figure 4, is a line of programmable robotics/construction toys, manufactured

by the Lego Group. It comes in a kit containing many pieces including sensors and cables. Mindstorms

originated from the programmable sensor blocks used in the Lego line of educational toys. [9] This project

used Lego Mindstorms NXT 2.0, which was released in 2009.

Figure 4: Lego NXT with Sensors

2.4.1 Lego NXT

The main component in the Lego Mindstorms kit is a brick-shaped computer called the NXT Intelligent

Brick. It can take input from up to four sensors and control up to three motors via RJ12 cables. The

8

brick has a 100×64-pixel monochrome LCD display and four buttons that can be used to navigate a user

interface using hierarchical menus. It also has a speaker and can play sound files at sampling rates up to

8 kHz. Power is supplied by 6 AA batteries (1.5 V each) in the consumer version of the kit, and by a Li-Ion

rechargeable battery and a charger in the educational version. [11] The specs for the CPU, RAM, hard disk

drive, and sensors are listed in Table 2.

NXT Brick NXT Sensors

CPU Pentium II Touch 0 or 1

RAM 32 MB Ultrasonic 0 ~ 170 (cm)

HDD 115 MB Light Intensity 0 ~ 100

Color RGB 0 ~ 255

Sound Intensity 0 ~ 100

Rotation 0 ~ 360 (degrees)

Table 2: NXT Specs

2.4.2 NXT Programming

The NXT-G toolkit is a programming package that distributed with Lego Mindstorms. It features an in-

teractive drag-and-drop environment, and it is useful for writing simple programs. NXT-G is powered

by LabVIEW, a popular programming environment created by National Instruments. LabVIEW uses data

flow programming to create a virtual instrument. [10] Figure 5 shows an example program using NXT-G.

In this program, we used only the light sensor. This program runs in a loop and plays a sound when the

reading from a light sensor crosses a threshold value.

Figure 5: NXT-G Example Program

9

The NXT-G software is adequate for basic programming on the robot, such as driving motors, incorpo-

rating sensor inputs, doing calculations, and learning simple programming structures and flow control.

[12] A more advanced programming language is required for the purposes of this project. Many options

were availabe but leJOS NXJ was chosen for this project because it is a high-level, open-source language

based on Java. leJOS application execute on the NXT using a custom firmware that provides a subset of

the typical JRE. [3]

3 Related Work

3.1 Acoustic Tape Measure Algorithm

The Acoustic Tape Measure algorithm on the XO relies on the ability of the XO microphone to hear the

XO speaker. The algorithm works by turning on the microphones of both XOs and then having both XOs

play distinctive sounds. One XO hears its own sound almost immediately, but there is a propagation delay

before it hears the sound from the other XO. The XO that plays second hears the first XO’s sound delayed

and hears its own sound immediately. Therefore, the first XO measures a longer interval between the two

sounds, and the second XO measures a shorter interval. The difference between these measurements is

twice the propagation delay, and combining this information with the approximated speed of sound, the

XOs can determine their distance apart. [1]

Acoustic techniques similar to this have been used successfully in other applications. For example, acous-

tic localization based on common time difference of arrival (TDOA) has been used in outdoor wireless

sensor networks (WSNs). [13, 14, 15, 16].

A visual explanation of the Distance algorithm is given below. Figure 6 shows the interaction of the activ-

ities with respect to time.

Symbol Description

M1 The interval between recording s1 and s2 on computer #1.

M2 The interval between recording s1 and s2 on computer #2.

tp The propagation delay due to the distance of the two computers.

t1 The interval between playing a sound and hearing the sound on the same computer.

t2 The interval between hearing a sound and recording the sound.

t3 The interval between recording a sound and playing a sound on computer #2.

Table 3: Description for Symbols used in the Algorithm

10

time #1 #2

M1 M2

tp

t2

t1

t2

t3

tp

t2

t2

t1

play s2

hear s1

hear s2

record s2

play s1

record s1

hear s2

record s2

hear s1

record s1

Figure 6: Acoustic Tape Measure Algorithm

The relevant time intervals with respect toM1 are shown in red in the left diagram in Figure 7. The relevant

time intervals with respect to M2 are shown in green in the right diagram of Figure 7.

time #1 #2

M1 M2

tp

t2

t1

t2

t3

tp

t2

t2

t1

play s2

hear s1

hear s2

record s2

play s1

record s1

hear s2

record s2

hear s1

record s1

time #1 #2

M1 M2

tp

t2

t1

t2

t3

tp

t2

t2

t1

play s2

hear s1

hear s2

record s2

play s1

record s1

hear s2

record s2

hear s1

record s1

Figure 7: Timelines Relevant to M1 (left) and M2 (right)

From the diagram, it is clear we can express M1 with tp, t1, t2, and t3.

11

M1 = tp − (t1 + t2) + t2 + t3 + tp + t2

= 2 · tp + t3 + t2 − t1.

Similarly, we can express M2 with t1, t2, and t3.

M2 = t3 + t1 + t2.

With this information, we can express the time difference of M1 and M2 with the other terms. The time

intervals of sounds are the measurable variables in this situation, and we will use them to calculate the

physical distance of two XOs.

M1 = 2 · tp + t3 + t2 − t1

M2 = t3 + t1 + t2

⇒ M1 −M2 = 2 · tp − 2 · t1.

Since we assumed that an XO hears its own sound almost immediately, we can approximate t1 as zero and

rewrite the equation as below, where d denotes the distance and csound denotes the speed of sound, which

in 80 °F dry air is 347 m/s.

M1 −M2 = 2 · tp − 2 · t1

d = tp · csound

⇒ d =
M1 −M2 + 2 · t1

2
· csound

∵ t1 ≈ 0

⇒ d ≈
M1 −M2

2
· csound.

Note that for this calculation to hold, we need to assume three environmental and hardware conditions.

First, we need to assume csound is the same at the two computers. Second, we need to assume the sound

sensor of a computer is sufficiently close to its speaker. In this case, t1, the time interval between playing

a sound and hearing a sound on one computer, can be approximated to zero. Last but not least, we

need to assume that t2’s are the same on both computers. This condition can be satisfied only when the

two computers have exactly the same hardware, and hence, we can guarantee the identical time interval

12

between hearing a sound and recording the sound by implementing the sound recording module the

same way on the two computers.

In other words, this algorithm does not work if the two computers are located at two places where the

speeds of sound are different, e.g., due to significantly different temperatures or air pressures; The algo-

rithm does not work if the speaker and sound sensor on one machine are too far a part to omit the time

interval of sound traveling from the speaker to the sensor on one machine; The algorithm does not work

if the two computers have different hardware or different instruction sets to record a sound on the client

and server machines.

3.2 NXT Java Setup

3.2.1 leJOS NXJ Firmware Setup

Setting up the NXT brick to run Java involves installing Java on the PC, installing the NXT USB driver on

the PC, and installing leJOS on the PC and on the NXT brick. The NXT-G operating system is replaced

with leJOS, a Java-based firmware, and the NXT brick then carries a limited version of the JRE and JVM.

3.2.2 Embedded Programming Environment

In this project, we used the Eclipse Integrated Development Environment (IDE). External tools were used

for compiling the code into a leJOS project and downloading the program into the NXT brick. These tools

were bundled with the firmware by the leJOS team. Figure 8 shows options in Eclipse to link and upload a

leJOS application to the NXT. This program displays “Hello, world” on NXT’s LCD until a button is clicked.

Figure 8: Eclipse for leJOS

13

3.2.3 Runtime Diagnostics

The speed of the NXT LCD is inadequate for diagnosing and debugging high-speed operations in real-

time. As an alternative, the leJOS provides a remote console module that is intended to display LCD

output as well as debugging messages from running applications. Figure 9 demonstrates the code to start

the remote console as well as the console output for the HelloWorld program.

Use of the remote console requires a connection, either USB or Bluetooth. Bluetooth is preferable, but

the instability in the wireless connection can at times limit the usefulness of this debugging technique.

Figure 9: leJOS Remote Console

3.3 NXT Sound System

We explored the possibility of implementing the XO Acoustic Tape Measure algorithm on the Lego NXT

brick. To ensure the Distance algorithm would generate reasonable measurements, the NXT hardware

needed to meet some basic requirements shown in Table 4.

Component Requirement

Speakers To play sounds louder than ambient noise

Sound Sensors To detect sounds from an NXT speaker

System To record and play sounds simultaneously

Table 4: Basic Hardware Requirement for the Distance Implementation

To use the algorithm with three or more participants and to make measurements simultaneously, the

NXT would need two additional capabilities, which are shown in Table 5. If the hardware could not meet

these requirements, the participants would be required to follow a pre-defined protocol and take turns

emitting sounds.

14

Component Requirement

Speakers To play distinctive sounds louder than ambient noise.

Sound Sensors To detect distinctive sounds from NXT speakers

Table 5: Basic Hardware Requirement for Multiple Participants

3.3.1 Speakers

The Lego NXT speakers are capable of playing a specified frequency (Hz) at a specified volume (% of the

system sound) for a specified duration (ms).

3.3.1.1 Frequency

In the first experiment, we tested the NXT’s ability to play different frequencies at a fixed volume. We

programmed the NXT to play at 200 Hz, 400 Hz, 600 Hz, 800 Hz, and 1000 Hz. All sounds were played at

100% volume for a duration of 1 second on and 2 seconds off. The results were as expected.

3.3.1.2 Volume

In the second experiment, we tested the NXT’s ability to play different volumes at a fixed frequency. We

programmed the NXT to play at 20%, 40%, 60%, 80%, and 100% of its maximum volume. All sounds were

played at 800 Hz for a duration of 1 second on and 2 seconds off. The results were as expected.

Although the NXT speakers were not particularly loud, from these preliminary tests, it seemed the NXT

speakers would be adequate for the Distance application in reasonably quiet environments.

3.3.2 Sound Sensor

The Lego NXT sound sensor detects sounds in two modes, decibels (DB) mode and adjusted decibel

(DBA) mode. In DB mode, all sound frequencies are measured with equal sensitivity, and the sound

sensor is capable of detecting some sounds that are too high or too low for the human ear to hear. In DBA

mode, however, the sensitivity of the sensor is adapted to the sensitivity of the human ear. In other words,

the sensor attempts to ignore sounds that humans are unable to hear.[17]

The use of DB and DBA modes to detect ranges of frequencies has been studied previously[17]. In this

project, however, it was desirable to know whether or not the capabilities of the sound sensor would be

adequate to distinguish frequencies generated by the NXT speaker.

15

Figure 10: NXT Sound Sensor

3.3.2.1 Frequency and Mode

In this experiment, we programmed one Lego NXT brick as a sound generator that played tones at a range

of frequencies. we programmed another Lego NXT brick as a sound receiver that recorded all sounds it

heard and printed those recorded values to the LCD in real time. The generator and receiver were placed

within one inch of each other.

Figure 11 shows the recorded values per frequency for DB and DBA modes.

Figure 11: NXT DB mode vs. DBA mode

This experiment demonstrated that the NXT sound sensor is able to distinguish sounds produced by the

speaker of another NXT. Both DB and DBA modes were adequate, although the largest, most stable range

of distinguishable frequencies were in DB mode between 800 and 1400 Hz.

3.3.2.2 Sound Pulse Detection

In this experiment, we programmed one Lego NXT brick as a sound generator that played a fixed fre-

quency, which was determined as the most sensitive frequency from the previous experiment, 1100 Hz.

16

We programmed another Lego NXT brick as a sound receiver that recorded all sounds it heard and trans-

mitted those recorded values to the PC. The generator and receiver were placed within one inch of each

other.

Figure 12 shows the recorded values for DB mode. Sounds were played at 100% volume for 0.5 seconds

on and 0.5 seconds off.

Figure 12: NXT Sound Pulse

This experiment demonstrated that the NXT sound sensor does not record sound as frequencies (oscilla-

tions). Even though it can capture approximately 5000 samples per second, the frequency of the sound is

lost, and only the amplitude (i.e., the envelope) is reported. In other words the raw data captured by the

sound sensor is insufficient to distinguish sounds of different frequencies. Other successful applications

using similar acoustic techniques have relied on a sensor’s capability of detecting frequencies of sounds.

[13]

This experiment also demonstrated that the NXT is easily able to detect pulses of sound when they are

louder than ambient noise. The levels reported by the sound sensor rose quickly and consistently after

the generation of the tone.

3.3.2.3 Distance Sensitivity

In this experiment, two Lego NXT bricks were programmed in a similar way as in the previous experiment,

and the receiver printed the recorded values to the LCD in real time.

Figure 13 shows the recorded values in DB mode. Sounds were played at 100% volume at a distance

ranging from 0.5 inches to 38 inches.

17

Figure 13: NXT Sound Detection at Distances

This experiment demonstrated that the NXT sound sensor can distinguish sound from another NXT

within only 30 inches (0.7 meters). This greatly reduces the usefulness of implementing the Distance

algorithm on the Lego NXT, especially considering the following two observations. One, the accuracy of

the algorithm is greatly diminished when the sender and receiver are in close proximity. Two, the sensible

range for distance measuring is less than the claimed capability range of the sound sensor.

3.3.2.4 Echo Influence

During the aforementioned experiments, we noticed that echo greatly affected the sound measurements.

When the sound receiver was located in the corner of a room, and the sound generator was located away

from the corner but facing it, the receiver recorded DB readings at approximately 25% higher than it did

when the two NXTs were placed in an open area. This is likely due to sound reflections from the walls.

4 NXT Distance Implementation

4.1 State Machine Design

We implemented the following state machines for the client unit (initiator) and the server unit (respon-

der). The application starts by allowing the user to specify the NXT’s mode of operation, client or server,

by pressing the left or right arrow buttons. The two NXTs then execute their state machines and continu-

ously display synchronized distance results until the user presses the escape button.

18

4.1.1 Client State Machine

After the client initiates the connection with the server, it enters its state machine, which is shown in

Figure 14. It starts by playing a tone (play s1) and immediately recording the tone (record s1). After

waiting for the tone to finish playing (stop s1), it waits for a tone from the server (record s2). After it

receives the second tone, it sends the timing M1 to the server (send M1) and then receives the distance d

from the server (receive d). It displays the distance and then waits a while (stop s2) before playing another

sound (play s1).

record s2

play s1

time

out?

pulse

detected?

record s1

stop s1

time

out?

pulse

detected?

stop s2

no

no

yes

yes

report failure

send

receive

Figure 14: Client State Machine

19

4.1.2 Server State Machine

After the server accepts the connection from the client, it enters its state machine, which is shown in

Figure 15. It starts by recording a tone played by the client (record s1). After waiting for the tone to finish

playing (stop s1), it plays a tone (play s2) and immediately records this tone (record s2). After receiving

the timing M1 from the client (receive M1), it calculates and displays the distance d, and then it sends the

calculation to the client (send d). It waits a while (stop s2) before recording another sound (record s1) .

record s2

time

out?

pulse

detected?

record s1

stop s1

time

out?

pulse

detected?

stop s2

no

no

yes

yes

report failureplay s2

receive

send

Figure 15: Server State Machine

20

4.2 Event Timeline

In an ideal scenario, the timeline of events would occur as shown in Figure 6. In real applications, how-

ever, there is a need to handle various errors. For instance, the program needs to recover from undetected

recordings.

Figure 16 shows the timeline for ideal cases in which when both parties detect sounds from each other.

There are two complete cycles shown in the diagram, where p represents the time between two consecu-

tive sound pulses. This time corresponds to the interval between the rising edges of the pulses, and it is

several times longer than then length of an individual pulse.

time

play s1

record s1

stop s1

record s2

stop s2

play s1

record s1

stop s1

record s2

stop s2

Client States

precord s1

stop s1

play s2

record s2

stop s2

record s1

stop s1

play s2

record s2

stop s2

Server States

p

p

p

Figure 16: Event Timeline in an Ideal Scenario

The application enters a failure state any time it fails to detect an expected sound pulse. It recovers from

this condition, displays a failure message, and then enters the next measurement cycle normally. Figure

17 shows the timeline when this occurs.

21

time

play s1

record s1

stop s1

record s2

failure

play s1

record s1

stop s1

record s2

stop s2

Client States

p

record s1

failure

record s1

stop s1

play s2

record s2

stop s2

Server States

p

p

p

timeout

recording s1

timeout

recording s2

fa
iled

recovered

Figure 17: Event Timeline with an Occurrence of Error

4.3 Program in Action

Both the client and server NXTs run the same version of the program, and the user must select which

state machine they execute. After the client initiates the connection, the two NXTs take turns playing

tones, and they display synchronized measurements. The program terminates when the user presses the

escape button. If only one participant is left running, it will continue to function, but it will continuously

display failures.

Just like the XO computers, it is best to position the NXTs so their speakers and microphones face each

other. Otherwise the distance measurements are inaccurate. The program is capable of recovering from

errors. When the NXT fails to detect the other participant, it displays a failure and continues to function.

When the sound from the other participant becomes detectable, the NXT recovers from the error and

continues to report measured distances.

22

Figure 18: NXT Distance Program in Action

4.4 Program Results

As discussed in Section 3.1 Distance Algorithm and Section 3.3 NXT Sound System, there are some hard-

ware limitations. In order the generate consistent readings, the NXTs must be in a quiet environment,

away from walls, without obstacles between them, and without physical disturbances.

Recordings were computed using the following formula, where csound is 1.366× 10−5 inches per nanosec-

ond, corresponding to 347 meters per second, which is the speed of sound in 80 °F.

d ≈

M1 −M2

2
· csound.

Figure 19 shows recorded distance versus actual distance for 6 different distances: 2 inches, 4 inches, 6

inches, 8 inches, 10 inches, and 12 inches. For each distance, 25 continuous recordings were used as data

for the chart

Figure 19: NXT Distance Results

Figure 20 shows the average recorded distance versus actual distance.

23

Figure 20: NXT Average Distance Results

5 NXT Distance Analysis and Discussions

The NXTs do not calculate the correct distances, but the values they calculate are consistent and do di-

rectly correspond to the actual distances of separation, i.e., by introducing a constant scaling factor such

as 20.

Recall the two assumptions of the Distance algorithm: t1 approximates zero, and the four durations of t2

in the event timeline are the same. The implementation must satisfy these conditions. On the NXT the

speaker and sound sensor are in close proximity, so basic physics tells us that t1 is approximately zero. To

satisfy the second condition, we carefully constructed the code so that t2 was calculated using identical

bits of code, i.e. a single method. In other words, all four different sound recording states of the two

different state machines recorded sounds in identical ways.

In spite of this, there is clearly a discrepancy between the actual distances and the recorded distances. To

investigate this problem, we performed two additional experiments on the NXTs.

5.1 Attack Time Analysis

5.1.1 Attack Time vs. Pulse Durations

Figure 21 shows the results of our first experiment. We programmed an NXT as a sound generator and

receiver. We had it play a fixed tone at different durations: 1/2 second, 1/20 second, and 1/200 second.

24

Figure 21: NXT Sound Pulses at Different Pulse Durations

From this experiment, we learned that short sound durations would not suffice for the NXT Distance

program. This is due to the fact that the attack time of the sound pulses is long, and a short duration,

such as 1/20 second (50 milliseconds), is not enough time for the sensor to detect a tone generated by

another NXT at its peak volume.

5.1.2 Attack Time vs. Distances

For relatively long attack times, the time to reach the user-defined DB threshold seemed inconsistent.

This threshold was set to be 30% DB value for the NXT Distance executions in Section 4.4, Program Re-

sults. This effect could greatly influence the distance measurement. To study this further, we performed a

second experiment. We programmed one NXT as a sound pulse generator and a second NXT as a sound

receiver. We played a fixed tone at a fixed duration at different distances: 2 inches, 6 inches, 10 inches,

and 12 inches. Figure 22 shows the results of this experiment.

Figure 22: NXT Sound Pulses at Different Distances

25

This experiment demonstrated that it would take significantly different periods of time to reach the user-

defined DB threshold, based solely on the distance of separation between the two NXTs. Figure 23 demon-

strates this situation.

Symbol Description

t1 The amount of time to reach the DB threshold for a sound pulse generated at a close distance.

t2 The amount of time to reach the DB threshold for a sound pulse generated at an average distance.

t3 The amount of time to reach the DB threshold for a sound pulse generated at a far distance.

Table 6: Description for Symbols used in the Attack Time Comparison Chart

t1

t2

t3

Receiver

Timeline

User defined

DB threshold

Figure 23: NXT Attack Time Comparison

5.2 Attack Time Influence in the Distance Algorithm

What we have found is the interval between two sound pulses measurements, M1 −M2, is in fact greater

than 2 · tp, which was the original conclusion. The new formula is shown below, where td is delay caused

by different attack times.

M1 −M2 = 2 · tp + 2 · td.

Figure 24 demonstrates the origin of this new term:

Symbol Description

M1 The interval between recording s1 and s2 on the client

M2 The interval between recording s1 and s2 on server.

tp The propagation delay due to the distance between the two computers.

td1
The delay caused by different attack times at distance d1.

td2
The delay caused by different attack times at distance d2.

Table 7: Description for Symbols used in the Attack Time Effect Chart

26

M1

Client

Timeline

User defined

DB threshold

M2

tp tp

User defined

DB threshold

Server

Timeline

M1

Client

Timeline

User defined

DB threshold

M2

M1

Client

Timeline

User defined

DB threshold

M2

User defined

DB threshold

Server

Timeline

User defined

DB threshold

Server

Timeline

eoretical

E
m

p
irical (C

lose P
roxim

ity)
E

m
p

irical (F
ar P

roxim
ity)

tp + td1

tp + td2

tp + td1

tp + td2

Figure 24: NXT Attack Time Effect

As discussed previously, the usefulness of this algorithm is mainly restricted by the quick diminishing of

sound sensitivity as the distance increases. NXT sound sensors are incapable of detecting sounds from

other NXTs that are located only a couple of feet away. In the experiments above, the maximum distance

27

shown was 12 inches, which is about as far away as it is possible to record accurate distances. Extremely

quiet environments would allow the NXTs to distinguish sounds with greater sensitivity and the mea-

surements within a detectable range can easily be calibrated so that the NXT reports an correct distance

recording. But due to capability of the NXT speaker and sound sensor, the usage of this application would

still be limited.

6 Conclusions

In this project, we studied the algorithm of the Acoustic Tape Measure (Distance) program, which is dis-

tributed with the XO computer from the OLPC project. We explored the Java programming environment

of the Lego NXT from the Lego Mindstorms robotics kit. After performing a series of experiments with test

programs, we implemented the Distance algorithm as an autonomous program running on two NXTs. We

then analyzed the application performance and noticed a consistent error term. Inspired by these results,

we conducted more experiments and derived the origin of this error, the relatively slow attack time of the

speaker. For this reason, sounds originating at different distances were detected with substantially dif-

ferent attack times, and this breaks the Distance algorithm by introducing an un-modeled time delay. To

investigate this further, we should be able to implement the algorithm on other hardware without much

modification to the state machines introduced by this paper.

In this project, we explored an alternative NXT firmware and SDK called leJOS. The leJOS SDK utilizes

a standard Java compiler to build images that execute on the NXT. The JRE is limited but does support

network communications, threading, and a variety of classes to control the NXT hardware. Overall, com-

bined with Eclipse, leJOS and the Lego NXT are proved to be an educational toy and could be a good

candidate for introductory computer science and software engineering courses. [18]

28

References

[1] Acoustic Tape Measure. http://wiki.laptop.org/go/Acoustic_Tape_Measure

[2] Lego Group (January 4, 2006). "What’s NXT? LEGO Group Unveils LEGO MINDSTORMS NXT

Robotics Toolset at Consumer Electronics Show". Press release. Retrieved 2007-09-17.

[3] leJOS, Java for Lego Mindstorms. http://lejos.sourceforge.net/index.php

[4] Bentley, C. (2007). “The OLPC Laptop: Educational Revolution or Devolution?” in Proc. 2007 World

Conference on ELearning in Corporate, Government, Healthcare and Higher Education. Quebec,

Canada, pp. 647-652.

[5] Ward, Mark (September 27, 2007). "BBC NEWS - Technology - Portables to power PC industry". BBC

News. Retrieved 2008-01-25.

[6] OLPC XO. http://laptop.org/en/laptop/

[7] Netbook History. http://en.wikipedia.org/wiki/Netbook#History

[8] XO Activities. http://wiki.laptop.org/go/Activities

[9] Lego Mindstorms. http://en.wikipedia.org/wiki/Lego_Mindstorms

[10] LabVIEW. http://en.wikipedia.org/wiki/Lego_Mindstorms_NXT_2.0#NXT-G

[11] Lego NXT. http://en.wikipedia.org/wiki/Lego_Mindstorms_NXT#NXT_Intelligent_Brick

[12] NXT-G. http://en.wikipedia.org/wiki/Lego_Mindstorms_NXT#NXT-G

[13] Jingbin Zhang, Ting Yan, John A. Stankovi, Sang H. Son (2007). “Thunder: towards practical, zero cost

acoustic localization for outdoor wireless sensor networks”. ACM SIGMOBILE Mobile Computing

and Communications Review, Vol. 11, No.1, pp.15–28.

[14] Y. Kwon, K. Mechitov, S. Sundresh, W. Kim, G. Agha (2005). “Resilient Localization for Sensor Net-

works in Outdoor Environments”, in Proceedings of ICDCS, 2005.

[15] J. Sallai, G. Balogh, M. Maroti, A. Ledeczi, B. Kusy (2004). “Acoustic Ranging in Resource-Constrained

Sensor Networks”, Technical Re- port, ISIS-04-504.

[16] A. Savvides, C.C. Han, M.B. Srivastava (2001) “Dynamic fine-grained lo- calization in ad-hoc wireless

sensor networks”, in Proceedings of MobiCom, 2001.

[17] DB-DBA Study. http://www.convict.lu/htm/rob/NXT_sound_sensor.htm

[18] Michael W. Lew, Thomas B. Horton, Mark S (2010). "Using LEGO MINDSTORMS NXT and LEJOS in

an advanced software engineering course," in Proc. 2010 23rd IEEE Conference on Software Engi-

neering Education and Training (CSEET), IEEE Computer Society. Washington, DC, pp.121-128.

29

