TA: Jade Cheng ICS 241 Recitation Lecture Note #5 September 25, 2009

Recitation #5

Question:	Let R be the following relation defined on the set $\{a, b, c, d\}$:
	$R = \{(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)\}.$
	Determine whether R is [Chapter 8.1 Review]
а.	Reflexive
Answer:	R is reflexive because R contains (a, a) , (b, b) , (c, c) , and (d, d) .
b.	symmetric
Answer:	R is not symmetric because $(a, c) \in R$, but $(c, a) \notin R$.
с.	antisymmetric
Answer:	R is not antisymmetric because $(b, c) \in R$, and $(c, b) \in R$, but $b \neq c$.
d.	transitive
Answer:	<i>R</i> is not transitive because, for example, $(a, c) \in R$ and $(c, b) \in R$, but $(a, b) \notin R$.
Question:	Let <i>R</i> be the following relation on the set of real numbers: $aRb \leftrightarrow \lfloor a \rfloor = \lfloor b \rfloor$, where $\lfloor x \rfloor$ is the floor of <i>x</i> .
	Determine whether <i>R</i> is [Chapter 8.1 Review]
а.	Reflexive
Answer:	R is reflexive because $[a] = [a]$ is true from all real numbers.

b.	symmetr	ric			
Answer:	R is sym	metric suppose $[a]$ =	= [b]; then [b]	$ = \lfloor a \rfloor.$	
с.	antisymı	netric			
Answer:	<i>R</i> is not [1.2].	antisymmetric: we	can have aR	b and bRa for disting	tt a and b . For example, $[1.1] =$
d.	transitiv	e			
Answer:		sitive, suppose $[a]$ = hat $[a] = [c]$.	= [<i>b</i>] and [<i>b</i>]	= [c]; from transitiv	<i>v</i> ity of equality of real numbers, it
Question:	Answer t	he following questic	ons regarding	this Flight Table: [Ch	apter 8.2 Review]
	Airline	Flight_number	Gate	Destination	Departure_time
	Ν	122	34	Detroit	08:10
	А	221	22	Denver	08:17
	А	122	33	Anchorage	08:22
	А	323	34	Honolulu	08:30
	Ν	199	13	Detroit	08:47
	А	222	22	Denver	09:10
	Ν	322	34	Detroit	09:44
a.		g that no new n -tup eld for the database :			ey with two fields containing the
Answer:	Airline aı	nd Flight_number; Air	rline and Depa	rture_time	
ь.		o you obtain when ion = Detroit, to the o			for $s_{\mathcal{C}}$, where $\mathcal C$ is the condition
Answer:	(N, 122,	34, Detroit, 08:10),	(N, 199, 13, D	etroit, 08:47), (N, 32	2, 34, Detroit, 09:44).
c.				lection operator s_C, v se in the Flight Table	where C is the condition (<i>Airline</i> = .
Answer:		34, Detroit, 08:10), (08:17), (A, 222, 22, I			2, 34, Detroit, 09:44), (A, 221, 22,

Answer:	Airline	Destination	
	Ν	Detroit	
	А	Denver	
	А	Anchorage	
	А	Honolulu	
	Ν	Detroit	
	А	Denver	
	Ν	Detroit	

d. Display the table produced by applying the projection **P**_{1,4} to the Flight Table.

Question: Show that if C_1 and C_2 are conditions that elements of the *n*-ary relation *R* may satisfy, then $s_{C_1}(s_{C_2}R) = s_{C_2}(s_{C_1}R).$ [Chapter 8.2 Review]

Answer: Both sides of this equation pick out the subset of R consisting of those n-tuples satisfying both conditions C_1 and C_2 .

$$s_{C_1}(s_{C_2}R) = s_{C_1,C_2}R$$
$$s_{C_2}(s_{C_1}R) = s_{C_1,C_2}R$$
$$\Rightarrow s_{C_1}(s_{C_2}R) = s_{C_2}(s_{C_1}R).$$

Question:	Give an example to show that if R and S are both n-ary relations, then $P_{i_1,i_2,\cdots,i_m}(R-S)$ may be
	different from $P_{i_1,i_2,\cdots i_m}(R) - P_{i_1,i_2,\cdots i_m}(S)$. [Chapter 8.2 Review]
Answer:	Let set R be the n -tuple relation below:

CI .	Det Set I	t be the <i>n</i> tuple relat	ion below.			
	Airline	Flight_number	Gate	Destination	Departure_time	
	Ν	122	34	Detroit	08:10	
	А	221	22	Denver	08:17	
	А	122	33	Anchorage	08:22	
	А	323	34	Honolulu	08:30	
		be the <i>n</i> -tuple relation				
	Airline	Flight_number	Gate	Destination	Departure_time	
	А	221	22	Denver	08:17	
	А	122	33	Anchorage	08:22	
	А	323	34	Honolulu	08:30	
	Ν	199	13	Detroit	08:47	
	А	222	22	Denver	09:10	
	Ν	322	34	Detroit	09:44	

By definition R - S contains the set elements that are in R but not in S. So R - S is as below:AirlineFlight_numberGateDestinationDeparture_time

34

Ν

122

Let $m = 1$, We obtain the following relationship regarding $P_{i_1,i_2,\cdots i_m}(R-S)$ and $P_{i_1,i_2,\cdots i_m}(R)$ –
$P_{i_1,i_2,\cdots i_m}(S)$:

Detroit

08:10

$$\begin{split} P_{i_{1},i_{2},\cdots i_{m}}(R-S) &= P_{1}(R-S) \\ &= \{(N)\} \, . \\ \\ P_{i_{1},i_{2},\cdots i_{m}}(R) - P_{i_{1},i_{2},\cdots i_{m}}(S) &= P_{1}(R) - P_{1}(S) \\ \\ P_{1}(R) &= \{(N), (A)\} \\ \\ P_{1}(S) &= \{(N), (A)\} \\ \\ &\Rightarrow P_{1}(R) - P_{1}(S) = \emptyset \, . \\ \\ &\because \emptyset \neq \{(N)\} \\ \\ &\therefore P_{i_{1},i_{2},\cdots i_{m}}(R-S) \neq P_{i_{1},i_{2},\cdots i_{m}}(R) - P_{i_{1},i_{2},\cdots i_{m}}(S) \, . \end{split}$$

Question:	Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order) [Chapter 8.3 Review]
a.	{(1,1), (1,2), (1,3)}
Answer:	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$
b.	{(1,2), (2,1), (2,2), (3,3)}
Answer:	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$
с.	{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)}
Answer:	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$

Question:	List the ordered pairs in the relations on $\{1, 2, 3\}$ corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order). [Chapter 8.3 Review]
a.	$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
Answer:	$\{(1,1), (1,3), (2,2), (3,1), (3,3)\}.$
Ь.	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
Answer:	$\{(1,2),(2,2),(3,2)\}.$
c.	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
Answer:	$\{(1,1), (2,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3)\}.$
Question:	Determine whether the relations represented by the matrices in the previous Question are reflexive, irreflexive, symmetric, antisymmetric. [Chapter 8.3 Review]
Answer:	The matrix representing a reflexive relation has 1's for all its main diagonal entries such as:
	$\begin{bmatrix} 1 & ? & ? \\ ? & 1 & ? \\ ? & ? & 1 \end{bmatrix}.$
	The matrix representing a irreflexive relation has 0's for all its main diagonal entries such as
	$\begin{bmatrix} 0 & ? & ? \\ ? & 0 & ? \\ ? & ? & 0 \end{bmatrix}.$
	The matrix representing a symmetric relation has a symmetric 1's and 0's layout according to its main diagonal, such as
	$\begin{bmatrix} ? & ? & 0 \\ ? & ? & 1 \\ 0 & 1 & ? \end{bmatrix}.$
	The matrix representing an antisymmetric relation has all 1's having 0's as the counterpart according to its main diagonal, such as
	$\begin{bmatrix} ? & 1 & 0 \\ 0 & ? & 0 \\ 0 & 1 & 2 \end{bmatrix}.$
	L0 1 ?]

[1	0	1]	[O	1	01		<u>۲</u> 1	1	1]	
So it's clear 0	1	$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ is reflexive, and symmetric	0	1	0	is antisymmetric,	1	0	1 is	s
L1	0	1	Lo	1	0]		l1	1	1]	
symmetric.										

Question: Let *R* be the relation represented by the matrix: [Chapter 8.3 Review]

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Find the matrices that represent R^2 , R^3 , and R^4 .

Answer:	$R^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0\\1\\0\end{bmatrix}$	$ \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} $	$\begin{bmatrix} 0\\1\\0 \end{bmatrix} =$	$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$	1 0 1			
	$R^3 = R^2 \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	1 0 1	$\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$	0 1 1	$\begin{bmatrix} 1\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	1 0 1	$\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$	1 1 1	$\begin{bmatrix} 0\\1\\1\end{bmatrix}$.
	$R^4 = R^3 \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	1 0 1	$\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$	1 1 1	$\begin{bmatrix} 0\\1\\1 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	1 0 1	$\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$	1 1 1	1 1 1].

Some Problems that appeared in HW#2 and E1

Question:	Find the number of solutions of the equation $x_1 + x_2 + x_3 + x_4 = 17$, where x_i , $i = 1, 2, 3, 4$, are nonnegative integers such that $x_1 \le 3$, $x_2 \le 4$, $x_3 \le 5$, and $x_4 \le 8$. [Chapter 7.6 Review]
Answer:	To apply the principle of inclusion-exclusion, let a solution have property P_1 if $x_1 > 3$, property P_2 if $x_2 > 4$, property P_3 if $x_3 > 5$, and property P_4 if $x_4 > 8$. The number of solutions
	satisfying the inequalities $x_1 \le 3, x_2 \le 4, x_3 \le 5$ and $x_4 \le 8$ is

$N(P_1'P_2'P_3'P_4') = N - N(P_1) - N(P_3) - N(P_3) - N(P_4)$ + N(P_1P_2) + N(P_1P_3) + N(P_1P_4) + N(P_2P_3) + N(P_2P_4) + N(P_3P_4)
$-N(P_1P_2P_3) - N(P_1P_3P_4) - N(P_1P_2P_4) - N(P_2P_3P_4)$
$+N(P_1P_2P_3P_4).$
N = total number of solutions = C(4 + 17 - 1, 17) = 1140 $N(P_1) = \text{number of solutions with } x_1 > 3 = C(4 + 13 - 1, 13) = 560$
$N(P_2)$ = total number of solutions $x_2 > 4 = C(4 + 12 - 1, 12) = 455$ $N(P_3)$ = total number of solutions $x_3 > 5 = C(4 + 11 - 1, 11) = 364$
$N(P_4) = \text{total number of solutions } x_4 > 8 = C(4 + 8 - 1, 8) = 165$
$N(P_1P_2) = \text{total number of solutions } x_1 > 3 \text{ and } x_2 > 4 = C(4 + 8 - 1, 8) = 165$
$N(P_1P_3)$ = total number of solutions $x_1 > 3$ and $x_3 > 5 = C(4 + 7 - 1, 7) = 120$
$N(P_1P_4)$ = total number of solutions $x_1 > 3$ and $x_4 > 8 = C(4 + 4 - 1, 4) = 35$
$N(P_2P_3)$ = total number of solutions $x_2 > 4$ and $x_3 > 5 = C(4 + 6 - 1, 6) = 84$ $N(P_2P_4)$ = total number of solutions $x_2 > 4$ and $x_4 > 8 = C(4 + 3 - 1, 3) = 20$
$N(r_2r_4) = \text{total number of solutions } x_2 > 4 \text{ and } x_4 > 0 = C(4 + 3 - 1, 3) = 20$ $N(P_3P_4) = \text{total number of solutions } x_3 > 5 \text{ and } x_4 > 8 = C(4 + 2 - 1, 2) = 10$
$N(P_1P_2P_3) = \text{total number of solutions } x_1 > 3, x_2 > 4, x_3 > 5 = C(4 + 2 - 1, 2) = 10$
$N(P_1P_2P_4)$ = total number of solutions $x_1 > 3, x_2 > 4, x_4 > 8 = 0$
$N(P_1P_3P_4) = \text{total number of solutions } x_1 > 3, x_3 > 5, x_4 > 8 = 0$
$N(P_2P_3P_4) = $ total number of solutions $x_2 > 4, x_3 > 5, x_4 > 8 = 0$
$N(P_1P_2P_3P_4) = \text{total number of solutions } x_1 > 3, x_2 > 4, x_3 > 5, x_4 > 8 = 0$
Inserting these quantities into the formula for $N(P'_1P'_2P'_3P'_4)$ shows that the number of solutions with that $x_1 \le 3, x_2 \le 4, x_3 \le 5$, and $x_4 \le 8$ equals: $N(P'_1P'_2P'_3P'_4) = 1140 - 560 - 455 - 364 - 165 + 165 + 120 + 35 + 84 + 20 + 10 - 10 - 0 - 0 - 0 + 0 = 20$.
Question: Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are. [Chapter 7.2]
a. $a_n = 3a_{n-2}$
Answer: Linear, homogeneous, with constant coefficients, degree 2.
b. $a_n = 3$

Linear, with constant coefficients but not homogeneous. Answer:

с.	$a_n = a_{n-1}^2$
Answer:	not Linear.
d.	$a_n = a_{n-1} + 2a_{n-3}$
Answer:	Linear, homogeneous, with constant coefficients, degree 3.
e.	$a_n = a_{n-1}/n$
Answer:	Linear, homogeneous, but not with constant coefficients.
f.	$a_n = a_{n-1} + a_{n-2} + n + 3$
Answer:	Linear, with constant coefficients, but not homogeneous.
g.	$a_n = 4a_{n-2} + 5a_{n-4} + 9a_{n-7}$
Answer:	Linear, homogeneous, with constant coefficients, degree 7.
Question:	Solve the recurrence relation $a_n = 2a_{n-1} + 2n^2$ with initial condition $a_1 = 4$. [Chapter 7.2
	Review]
Answer:	The characteristic equation for the associated homogeneous recurrence relation is $r - 2 = 0$. So it has solutions $r = 2$ Therefore the general solution to the associated homogeneous recurrence relation is:
	$a_n = a \cdot 2^n$.
	To obtain a particular solution to the given recurrence relation, try $a_n^{(p)} = b \cdot n^2 + c \cdot n + d$, obtaining:
	$b \cdot n^2 + c \cdot n + d = 2b \cdot (n-1)^2 + 2c \cdot (n-1) + 2d + 2n^2$
	$\implies (b+2)n^2 + (c-4b)n + 2b - 2c + d = 0$

The coefficient of n^2 , n terms and the constant term must each equal 0. Therefore, we have

$$b + 2 = 0$$

$$c - 4b = 0$$

$$2b - 2c + d = 0$$

$$d = -12$$
 Therefore

Hence, we have b = -2 c = -8 and d = -12. Therefore:

$$a_n = a \cdot 2^n - 2n^2 - 8n - 12.$$

The initial condition $a_1 = 4$, yields the system of equations coefficient:

$$a_1 = a \cdot 2^1 - 2 \cdot 1^2 - 8 \cdot 1 - 12 = 4$$
$$\implies a = 13.$$

The coefficient is found to be a = 13. Therefore the solution to the given recurrence relation is:

$$a_n = 13 \cdot 2^n - 2n^2 - 8n - 12$$