
TA: Jade Cheng

ICS 241

Recitation Lecture Notes #11

November 06, 2009

Recitation #11

Question: Use Huffman coding to encode these symbols with given frequencies: �: 0.20, �: 0.10, 	: 0.15,

�: 0.25, �: 0.30. [Chapter 10.2 Review]

a. Construct two different Huffman codes for these given symbols.

Answer: Since the orders for same frequency parts can be different; the insertion can be different based

on implementation, there is more than one way to construct Huffman codes for a particular set

of symbols. In this example, one way of doing it is:

cb

a

0.45

0.25e

0.30

d

0.25

cb

a

0.45

0.25 ed

0.55

So, the Huffman codes for these symbols with the given frequencies can be

�: 00, �: 010, 	: 011, �: 10, �: 11. We can also implement an insertion that inserts after the

nodes with the same values. Also, we can group the node from right to left instead of left to

right. There is another way of doing it:

We get a different set of encoding this time and they are: �: 11, �: 011, 	: 010, �: 10, �: 00. As we

saw the shapes of these two Huffman trees happen to be the same.

b. What is the average number of bits required to encode a character?

Answer: Let’s use the first way of encoding as an example, �: 00, �: 010, 	: 011, �: 10, �: 11. Let’s call the

average number of bits �������� , the frequencies of characters ��, �� , ��, �� , ��.

�������� � �� � �� � �� � �� � �� � �� � �� � �� � �� � ��

� 2 � 0.20 � 3 � 0.10 � 3 � 0.15 � 2 � 0.25 � 2 � 0.30

� 0.40 � 0.30 � 0.45 � 0.5 � 0.6

� 2.25 .

Now let’s look at the second way of encoding, �: 11, �: 011, 	: 010, �: 10, �: 00. They length of

encoding each character is the same as the first way and the average �������� bit required to

encode a letter is therefore the same 2.25.

c. How much savings does the Huffman code provide on average compared to a fixed-length

encoding on these symbols?

Answer: We have computed the average number of bits needed to encode these symbols using Huffman

encoding. Let’s consider the number of bits needed to encode these symbols using fixed-length

encoding. We have five different symbols, hence we need at least 3 bits long codes. Because

2� � 1 � 7 ! 5. So we would be using 3 bits per character for fixed-length encoding.

�"#$��_&�'�() � �� � �� � �� � �� � �� � �� � �� � �� � �� � ��

� 3 � 0.20 � 3 � 0.10 � 3 � 0.15 � 3 � 0.25 � 3 � 0.30

� 0.60 � 0.30 � 0.45 � 0.75 � 0.9

� 3 .

Obviously, the frequencies in this case don’t do anything. The size of encoding for each

character is 3 all the time. So, we save +3 � 2.25,/3 � 25% on average.

Question: Determine the order of visits the vertices of the given ordered rooted tree. [Chapter 10.3 Review]

a. Preorder traversal

Answer: Step 1: Starting from the root : �, �, 	

Step 2: Exam every nodes on level 1: �, �, �, �, 	, �, /

Step 3: Exam every nodes on level 2: �, �, �, 0, 1, �, 2, 	, �, 3, /, 4, 5

Step 4: Exam every nodes on level 3: �, �, �, 0, �, 6, 1, �, 2, 7, 	, �, 3, /, 4, 8, 9, 5, :

Step 4: Exam every nodes on level 4: �, �, �, 0, �, 6, 1, �, 2, 7, 	, �, 3, /, 4, 8, ;, <, 9, 5, :

b. Postorder traversal

Answer: Step 1: Starting from the root : �, 	, �

Step 2: Exam every nodes on level 1: �, �, �, �, /, 	, �

Step 3: Exam every nodes on level 2: 0, 1, �, 2, �, �, 3, �, 4, 5, /, 	, �

Step 4: Exam every nodes on level 3: �, 6, 0, 1, �, 7, 2, �, �, 3, �, 8, 9, 4, :, 5, /, 	, �

Step 4: Exam every nodes on level 4: �, 6, 0, 1, �, 7, 2, �, �, 3, �, ;, <, 8, 9, 4, :, 5, /, 	, �

c. Inorder traversal

Answer: Step 1: Starting from the root : �, �, 	

Step 2: Exam every nodes on level 1: �, �, �, �, �, 	, /

Step 3: Exam every nodes on level 2: 0, �, 1, �, �, 2, �, �, 3, 	, 4, /, 5

Step 4: Exam every nodes on level 3: �, 0, 6, �, 1, �, �, 7, 2, �, �, 3, 	, 8, 4, 9, /, 5, :

Step 4: Exam every nodes on level 4: �, 0, 6, �, 1, �, �, 7, 2, �, �, 3, 	, ;, 8, <, 4, 9, /, 5, :

Question: Inorder traverse the following tree. [Chapter 10.3 Review]

Review: There’s no confusing about poastorder and preorder, since the parent goes either at the end of at

the beginning and the children nodes get listed out from left to right one by one. But the inorder

tree traversal might be confusing. We would need to know where in the middle should we place

the parent. According to the inorder traversal algorithm provided on the book, we place the

parent right after the first child. In other words, only the left most child goes before the parent.

procedure Inorder(=: ordered rooted tree)

 9 >� 966;?=@

 if 4���?9@

 then list 9

 else

 begin

 4 >� first child of 9 from left to right

 =+4, >� subtree with 4 as its root

 A�69��9+=+4,, // list the first child

 list 9 // list the parent

 for each child 	 B 4 of 9 from left to right

 =+	, >� subtree with 	 as its root // list other children

 A�69��9+=+	,,

 end

Answer: Step 1: Starting from the root : �, �, 	, �

Step 2: Exam every nodes on level 1: �, �, �, �, 	, /, �, 0, 1

Question: Construct the parsing tree and write the algebraic expression below in the following different

notations. [Chapter 10.3 Review]

+� � �,� � �

� � +� C / � 0,#

a. Prefix notation.

Answer: Construct the parsing tree, which will be used in all three questions.

/

- +

d^ ^e

- i

f

-

g

a hb *

c

Now we can traverse the parse tree following the preorder tree traversal algorithm to obtain the

prefix notation of the given algebraic expression

/ - ^ - a b c d + e ^ - * f g h i

b. Postfix notation.

Answer: Traverse the parse tree following the postorder tree traversal algorithm to obtain the postfix

notation of the given algebraic expression

a b - c ^ d – e f g * h – i ^ + /

c. Infix notation.

Answer: Traverse the parse tree following the postorder tree traversal algorithm to obtain the postfix

notation of the given algebraic expression

a - b ^ c - d / e + f * g - h ^ i

Question: How many edges must be removed from a connected graph with � vertices and 5 edges to

produce a spanning tree? [Chapter 10.4 Review]

Review: Theorem 2 of Tree Properties: A tree with � vertices has � � 1 edges

Answer: Converting a connected graph to a spanning tree reduce the edges from the 5 to � � 1.

Therefore the edges to remove to produce a spanning tree is 5 � +� � 1, � 5 � � � 1.

Question: Look for all the spanning trees for the following simple connected graph. [Chapter 10.4 Review]

Answer: There are four different spanning trees we can construct from this graph.

Question: Use a depth-first search to find a spanning tree for the following graph. Use vertex � as the root

and use alphabetical ordering to determine in which order to visit the vertices. [Chapter 10.4

Review]

Answer: Step 1. Starting from the root �, � D 	.

Step 2. 	 D �

Step 3. Back track � D 	, and then 	 D �

Step 4. � D �

Step 5. � D �

Step 6. � D /

Step 7. / D 0

Step 8. Back track 0 D /, / D �, � D �, and then � D 1

Step 9. Back track 1 D �, � D �, � D 	, and then 	 D 3

Step 9. 3 D 2

At this point, we’ve traversed the entire tree and visited all nodes. Algorithm terminates and we

obtain the order of nodes we are going to visit using depth-first search. The order is

�, �, �, �, �, /, 0, 1, 3, 2.

Question: Use a breadth-first search to find a spanning tree for the following graph. Use vertex � as the

root and use alphabetical ordering to determine in which order to visit the vertices. [Chapter

10.4 Review]

Answer: Step 1. Starting from the root �.

Step 2. Explore all paths from �, � D 	, � D �

Step 3. Explore all paths from 	, 	 D �, 	 D 3

Step 4. Explore all paths from �, � D �

Step 5. Explore all paths from �, no new path. Node � is a leaf node.

Step 6. Explore all paths from 3, 3 D 2

Step 7. Explore all paths from �, � D �, � D /, � D 1

Step 8. Explore all paths from 2, no new path. Node 2 is a leaf node

Step 9. Explore all paths from �, no new path. Node � is a leaf node

Step 10. Explore all paths from /, / D 0

At this point, we’ve traversed the entire tree and visited all nodes. Algorithm terminates and we

obtain the order of nodes we are going to visit using breadth-first search. The order is

�, 	, �, �, 3, �, 2, �, /, 1, 0.

