
TA: Jade Cheng

ICS 311

Quiz Solution #5

March 11, 2009

Quiz #5:

What is the average time complexity (Θ) of each of the following actions?

Briefly justify your answers. [5 pts]

a. Insert an item into a Binary Search Tree.

Answer:

Θ n . Assuming the BST is not balanced

Θ lg n . Assuming the tree is balanced or randomly built

b. Remove an item from a Red-Black Tree .

Answer:

Θ lg n . Red-Black Tree guarantee Θ lg n time per access by

adjusting tree structure after every modification. The height of an R-B tree

cannot be any shorter than lg n1 but also no taller than 2×lg n1 .

This is obviously logarithmic, so a red black tree guarantees approximately

the best case for a binary search tree, which is Θ lg n .

c. Insert an item into a hash table that uses lists for collision management.

Answer:

Θ 1 Collision resolving using linked list has a insertion access time

Θ 1 by inserting the elements in the front side of the linked lists

d. Quicksort Q times.

Answer:

Θ Q lg Q . Quicksort is proven to have an average run time

expectation Θ n lg n , where n is the input size. Therefore, for an

input size of Q , it takes Θ Q lg Q .

e. Add K items to a heap.

Answer:

Θ K lg n . Heap adding and deleting operations takes Θ lg n . For

small K, we omit the lower order term K, the overall time complexity of

adding K items is Θ K lg n≈Θ lg n . For large K that is proportional

to the heap size, the overall time complexity is ΘK lg n≈Θ n lg n .

An algorithm is described by: T n=3n32n25n lg n7 . What is the time

complexity (Θ) of this algorithm? Prove your answer. [4 pts]

Answer:

T n=Θ n3

Goal: there exists positive constants c1, c2, and n0, such that

0≤ c1g n≤ T n≤ c2g n, where g n=n
3
, holds for all n≥n0 .

Let's pick c1=2 , c2=4 , and n0=8 .

Prove the upper bound T n≤ c2g n by induction:

For simplification purpose, we will first prove T n is upper bounded by

g ' n=3n37n27 , then prove g ' n=3n37n27 is upper bounded by

c2 g n . Based on the definition of Θ notation, if T n≤g ' n≤c2 g n holds for

all n≥n0 , we prove T n≤ c2g n holds for all n≥n0 .

Step 1: Prove T n≤g ' n

To be proved: 3n32n25n lg n7≤3n37n27 → lg n≤n

Base case: lg 8=3≤8 . Base case holds.

Assume: lg n−1≤n−1 holds.

lg n−1 =lg
nn−1
n

=lg nlg
n−1
n

≤n−1

Therefore:

lg n ≤n−1−lg
n−1
n

=n−1lg
n−1
n

=n−lg
2n−1
n

=n−lg 1
n−2
n

T n≤g ' n holds, if inequation T n−1≤ g ' n−1 and

lg 1n−2/n≥0 holds for all n≥n0 .

T n−1≤ g ' n−1 holds for n≥n0 is the assumption, so we just need to

prove lg 1n−2/n≥0 holds for all n≥n0 .

lg 1n−2/n≥0 holds if n−2/n≥0, which obvious does for all n≥n0=8

So far, we proved T n≤g ' n holds for all n≥n0 .

Step 2: Prove g ' n≤c2g n

Base case: 3×832×825×8×lg 87=1791

c2 g 8=4×8
3=4×512=2048

Base case holds

Assume: g ' n−1≤c2 g n−1 holds

g ' n−1 =3n−137n−127
=3n37 n27−9n27n4
=g ' n−9 n27 n4
≤c2 g n−1

=4 n−13

=4 n3−3n23 n−1
=c2 g n−12 n

2
12n−4

Therefore:

g ' n≤
=
=

c2g n−12n
212n−49n2−7n−4

c2g n−3n
25n−8

c2g n−3n2−5n8

g ' n≤c2g n holds for all n≥n0 , if g ' n−1≤c2 g n−1 and

3n2−5n8≥0 holds for all n≥n0 .

g ' n−1≤c2 g n−1 holds for n≥n0 is the assumption, and it is obvious

that 3n2−5n8≥0 holds for all n≥n0=8 .

So, we proved g ' n≤c2g n holds for all n≥n0 .

Combine Step 1 and Step 2, we proved T n≤g ' n and g ' n≤c2g n , where

g ' n=3n37n27 , hold for all n≥n0 . Therefore, T n≤ c2g n holds for all

n≥n0 .

Prove the lower bound 0≤c1g n≤T n by simple math:

It is obvious 0≤c1g n=2n
3 holds for all n≥n0=8 and c1 g n≤T n , which can

be written as 2 n3≤3n32n25n lg n7 , holds for all n≥n0=8 .

As we proved both the upper bound and lower bound, we proved that

0≤ c1g n≤ T n≤ c2g n, where g n=n
3
, c1=2 , c2=4 , and n0=8 , holds for all

n≥n0 . Therefor, the objective function T n is bounded by g n=n
3
,

T n=Θ n3 .

Circle all sort algorithms below that are stable. [2 pts]

Answer:

Bucket Sort → stable

Counting Sort → stable

Insertion Sort → stable

Merge Sort → stable

Quicksort → unstable

Radix Sort → stable

Selection Sort → stable

Shell Sort → unstable

