TA: Jade Cheng ICS 311 Quiz Solution #5 March 11, 2009

Quiz #5:

What is the <u>average time complexity (Θ)</u> of each of the following actions? Briefly justify your answers. [5 pts]

a. Insert an item into a Binary Search Tree.

Answer:

 $\Theta(n)$. Assuming the BST is not balanced

- $\Theta(\lg n)$. Assuming the tree is balanced or randomly built
- b. Remove an item from a Red-Black Tree .

Answer:

 $\Theta(\lg n)$. Red-Black Tree guarantee $\Theta(\lg n)$ time per access by adjusting tree structure after every modification. The height of an R-B tree cannot be any shorter than $\lg(n+1)$ but also no taller than $2 \times \lg(n+1)$. This is obviously logarithmic, so a red black tree guarantees approximately the best case for a binary search tree, which is $\Theta(\lg n)$.

c. Insert an item into a hash table that uses lists for collision management. Answer:

- $\Theta(1)$ Collision resolving using linked list has a insertion access time
- $\Theta(1)$ by inserting the elements in the front side of the linked lists

d. Quicksort Q times.

Answer:

 $\Theta(Q \lg Q)$. Quicksort is proven to have an average run time expectation $\Theta(n \lg n)$, where *n* is the input size. Therefore, for an input size of *Q*, it takes $\Theta(Q \lg Q)$.

e. Add K items to a heap.

Answer:

 $\Theta(K \lg n)$. Heap adding and deleting operations takes $\Theta(\lg n)$. For small K, we omit the lower order term K, the overall time complexity of adding K items is $\Theta(K \lg n) \approx \Theta(\lg n)$. For large K that is proportional to the heap size, the overall time complexity is $\Theta(K \lg n) \approx \Theta(n \lg n)$.

An algorithm is described by: $T(n)=3n^3+2n^2+5n \lg n+7$. What is the time complexity (Θ) of this algorithm? Prove your answer. [4 pts]

Answer:

$$T(n) = \Theta(n^3)$$

Goal: there exists positive constants c_1 , c_2 , and n_0 , such that $0 \le c_1 g(n) \le T(n) \le c_2 g(n)$, where $g(n) = n^3$, holds for all $n \ge n_0$.

Let's pick $c_1 = 2$, $c_2 = 4$, and $n_0 = 8$.

<u>Prove the upper bound</u> $T(n) \le c_2 g(n)$ by induction:

For simplification purpose, we will first prove T(n) is upper bounded by $g'(n)=3n^3+7n^2+7$, then prove $g'(n)=3n^3+7n^2+7$ is upper bounded by $c_2g(n)$. Based on the definition of Θ notation, if $T(n) \le g'(n) \le c_2g(n)$ holds for all $n \ge n_0$, we prove $T(n) \le c_2g(n)$ holds for all $n \ge n_0$.

Step 1: Prove
$$T(n) \leq g'(n)$$

To be proved: $3n^3 + 2n^2 + 5n lg n + 7 \le 3n^3 + 7n^2 + 7 \rightarrow lg n \le n$

Base case: $lg 8=3 \le 8$. Base case holds.

Assume:

$$lg(n-1) \le n-1 \text{ holds.}$$
$$lg(n-1) = lg\frac{n(n-1)}{n}$$
$$= lgn + lg\frac{n-1}{n}$$
$$\le n-1$$

Therefore:

$$lg n \le n - 1 - lg \frac{n-1}{n}$$
$$= n - (1 + lg \frac{n-1}{n})$$
$$= n - lg \frac{2(n-1)}{n}$$
$$= n - lg (1 + \frac{n-2}{n})$$

 $T(n) \le g'(n)$ holds, if inequation $T(n-1) \le g'(n-1)$ and $lg(1+(n-2)/n) \ge 0$ holds for all $n \ge n_0$.

 $T(n-1) \le g'(n-1)$ holds for $n \ge n_0$ is the assumption, so we just need to prove $lg(1+(n-2)/n) \ge 0$ holds for all $n \ge n_0$.

 $lg(1+(n-2)/n) \ge 0$ holds if $(n-2)/n \ge 0$, which obvious does for all $n \ge n_0 = 8$

So far, we proved $T(n) \le g'(n)$ holds for all $n \ge n_0$.

Step 2: Prove $g'(n) \leq c_2 g(n)$

Base case: $3 \times 8^{3} + 2 \times 8^{2} + 5 \times 8 \times lg \ 8 + 7 = 1791$ $c_{2} g(8) = 4 \times 8^{3} = 4 \times 512 = 2048$ Base case holds

Assume:

$$g'(n-1) \le c_2 g(n-1) \text{ holds}$$

$$g'(n-1) = 3(n-1)^3 + 7(n-1)^2 + 7$$

$$= (3n^3 + 7n^2 + 7) - 9n^2 + 7n + 4$$

$$= g'(n) - 9n^2 + 7n + 4$$

$$\le c_2 g(n-1)$$

$$= 4(n-1)^3$$

$$= 4(n^3 - 3n^2 + 3n - 1)$$

$$= c_2 g(n) - 12n^2 + 12n - 4$$

Therefore:

$$g'(n) \le c_{2g}(n) - 12n^2 + 12n - 4 + 9n^2 - 7n - 4$$

= $c_{2g}(n) - 3n^2 + 5n - 8$
= $c_{2g}(n) - (3n^2 - 5n + 8)$

 $g'(n) \le c_2 g(n)$ holds for all $n \ge n_0$, if $g'(n-1) \le c_2 g(n-1)$ and $3n^2 - 5n + 8 \ge 0$ holds for all $n \ge n_0$.

 $g'(n-1) \le c_2 g(n-1)$ holds for $n \ge n_0$ is the assumption, and it is obvious that $3n^2 - 5n + 8 \ge 0$ holds for all $n \ge n_0 = 8$.

So, we proved $g'(n) \le c_2 g(n)$ holds for all $n \ge n_0$.

Combine Step 1 and Step 2, we proved $T(n) \le g'(n)$ and $g'(n) \le c_2 g(n)$, where $g'(n) = 3n^3 + 7n^2 + 7$, hold for all $n \ge n_0$. Therefore, $T(n) \le c_2 g(n)$ holds for all $n \ge n_0$.

<u>Prove the lower bound</u> $0 \le c_1 g(n) \le T(n)$ by simple math:

It is obvious $0 \le c_1 g(n) = 2n^3$ holds for all $n \ge n_0 = 8$ and $c_1 g(n) \le T(n)$, which can be written as $2n^3 \le 3n^3 + 2n^2 + 5n \lg n + 7$, holds for all $n \ge n_0 = 8$.

As we proved both the upper bound and lower bound, we proved that $0 \le c_1 g(n) \le T(n) \le c_2 g(n)$, where $g(n) = n^3$, $c_1 = 2$, $c_2 = 4$, and $n_0 = 8$, holds for all $n \ge n_0$. Therefor, the objective function T(n) is bounded by $g(n) = n^3$, $T(n) = \Theta(n^3)$.

Circle all sort algorithms below that are <u>stable</u>. [2 pts]

Answer:

Bucket Sort	\rightarrow	stable
Counting Sort	\rightarrow	stable
Insertion Sort	\rightarrow	stable
Merge Sort	\rightarrow	stable
Quicksort	\rightarrow	unstable
Radix Sort	\rightarrow	stable
Selection Sort	\rightarrow	stable
Shell Sort	\rightarrow	unstable