TA: Jade Cheng ICS 311 Quiz Solution #7 April 29, 2009

Quiz #7:

Show the time (algorithm) and space (data structures) complexities of the following searches. Briefly justify your answers. Assume an average branching factor of *b*. [4 pts]

a. Depth-first search

Answer:

<u>Time:</u>	$\mathcal{O}(b^d)$ where d equals to the max depth explored.
Space:	$\Theta(b \times d)$ expands one child at each level with b
	nodes, leaving the remaining children on the stack.

b. Breadth-first search

Answer:	
<u>Time:</u>	$\Theta(b^d)$ where d equals depth of shortest path to a
	solution.
<u>Space:</u>	$\Theta(b^d)$ BFS expands all children at each level, thus
	there are b^d nodes on the queue at level d .

c. Best-first (heuristic) search

Answer:

<u>Time:</u> $\Theta(b^d)$ and $\Omega(d)$ where d equals depth of shortest

path to a solution.

Space: $\Theta(b^d)$ Best-First Search uses a priority queue,Ideally, one or a small number of "best" nodes are
expanded at each level, using space similar to
Depth-First Search. The better the heuristic, the
fewer "side" nodes are expanded. If all heuristic
values return 1, Breadth-First Search is performed.

Are the following searches <u>guaranteed to find a shortest path</u> to a solution? State the <u>conditions</u>, if any, for your answers. [3 pts]

a. Depth-first search

Answer:

No – It's like following the left all in a maze. Only with iterative deepening (a few levels at a time) or a very restricted search space (low branching factor and/or multiple goals) will DFS find close to a shortest path.

b. Breadth-first search

Answer:

Yes – All nodes in one level are expanded before any in the next one are expanded. Thus, any goal found takes the minimum number of moves.

c. Best-first search

Answer:

Yes – If the heuristic never <u>over-estimates</u> the actual path to the goal from the current node.

Compare time complexities. [3 pts]

```
Algorithm A is described by: T(n)=n^2+2n+8.
Algorithm B is described by: T(n)=4n1gn+41gn+16.
```

a-1. Which algorithm would be faster when n=2.

Answer:

```
A(2)=4+4+8=16, B(2)=8+4+16=28, therefor A is faster.
```

a-2. Which algorithm would be faster when n=8.

Answer:

```
A(8)=64+16+8=88, B(8)=96+12+16=124, therefor A is faster.
```

b. Calculate the value of *n* where they both take about the same amount of time. (hint: it's larger than 8).

Answer:

```
For n=16, they are about equal. A(16)=256+32+8=296, while B(16)=256+16+16=288 (B is a little faster).
```

c. Which algorithm is more efficient. (Extra credit)

Answer:

B is $\mathscr{O}(n1gn)$ algorithm, a lower time complexity than A, which is $\mathscr{O}(n^2)$. When *n* gets large, B will be faster than algorithm A. In this case, when $n \ge 16$, B is faster.