Jade Yu Cheng ICS 311 Homework 4 Sep 9, 2008

Question for lecture 5

Problem 4-4 on p. 86

Recurrence examples

I gave solutions to most of the sub problems. But there are three of them to which the master method doesn't apply. Recursion Tree didn't give me a clear enough answer, either. How do I solve sub problems b, d and e?

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \le 2$. Make your bounds as tight as possible, and justify your answers.

a.
$$T(n) = 3T\left(\frac{n}{2}\right) + n \lg n$$
.

Answer: We guess that the solution is $T(n) = \Theta(n^{\lg_2 3})$. Our method is to prove that $T(n) \le c_1 n^{\lg_2 3} - c_2 n \lg n$ for an appropriate choice of the constant c > 0. Substituting into the recurrence yields

$$T(n) = 3T\left(\frac{n}{2}\right) + n \lg n$$

$$\leq 3c_1 \cdot \left(\frac{n}{2}\right)^{\lg_2 3} - 3c_2 \cdot \left(\frac{n}{2}\right) \cdot \lg\left(\frac{n}{2}\right) + n \lg n$$

$$= c_1 n^{\lg_2 3} - \frac{3}{2} c_2 n \cdot (\lg n - \lg 2) + n \lg n$$

$$= c_1 n^{\lg_2 3} - c_2 n \lg n - \left(\frac{1}{2} c_2 n \lg n - \frac{3}{2} c_2 n \lg 2 - n \lg n\right)$$

$$= c_1 n^{\lg_2 3} - c_2 n \lg n - n \left[\lg n \cdot \left(\frac{1}{2} c_2 - 1\right) - \frac{3}{2} c_2 \lg 2\right]$$

$$\leq c_1 n^{\lg_2 3} - c_2 n \lg n$$

where the last step holds for $\lg n \cdot \left(\frac{1}{2}c_2 - 1\right) - \frac{3}{2}c_2 \lg 2 > 0$ e.g, $c_2 = 8$, $n = 2^4 + 1$.

b.
$$T(n) = 5T\left(\frac{n}{5}\right) + \frac{n}{\lg n}$$
.

Answer: ?

c.
$$T(n) = 4T\left(\frac{n}{2}\right) + n^2\sqrt{n}$$
.

Answer: We guess that the solution is $T(n) = \Theta(n^2 \sqrt{n})$. Our method is to prove that $T(n) \le cn^2 \sqrt{n}$ for an appropriate choice of the constant c > 0. Substituting into the recurrence yields

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \sqrt{n}$$

$$\leq cn^2 \sqrt{\frac{n}{2}} + n^2 \sqrt{n}$$

$$= cn^2 \frac{\sqrt{2n}}{2} + n^2 \sqrt{n}$$

$$= cn^2 \sqrt{n} - \left(\frac{2 - \sqrt{2}}{2}cn^2 \sqrt{n} - n^2 \sqrt{n}\right)$$

$$= cn^2 \sqrt{n} - n^2 \sqrt{n} \cdot \left(\frac{2 - \sqrt{2}}{2}c - 1\right)$$

$$\leq cn^2 \sqrt{n}$$

where the last step holds for $\frac{2-\sqrt{2}}{2}c-1>0$. e.g, c=4 and n>0.

d.
$$T(n) = 3T\left(\frac{n}{3} + 5\right) + \frac{n}{2}$$
.

Answer: We guess that the solution is $T(n) = \Theta(n \lg n)$.?

e.
$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\lg n}$$
.

Answer: ?

f.
$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right) + n$$
.

Answer: We guess that the solution is $T(n) = \Theta(n)$. Our method is to prove that $T(n) \le cn$ for an appropriate choice of the constant c > 0. Substituting into the recurrence yields

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right) + n$$

$$\leq \frac{cn}{2} + \frac{cn}{4} + \frac{cn}{8} + n$$

$$= cn - n\left(\frac{1}{8}c - 1\right)$$

$$\leq cn$$

where the last step holds for $\frac{1}{8}c-1>0$. e.g, c>8 and n>0.

g.
$$T(n) = T(n-1) + \frac{1}{n}$$
.

Answer: In this case, the master method does not work, we apply the recursion tree method to solve this recurrence.

rsion tree method to solve this recurrence.

$$T(n) \Rightarrow 1/n$$

$$T(n-1) \Rightarrow 1/(n-1)$$

$$T(n-2) \Rightarrow 1/(n-2)$$

$$\vdots$$

$$T(1) \Rightarrow 1$$

Based on the formula: $\sum_{i=1}^{n} \frac{1}{i} = \Theta(\lg n)$. Therefore the solution is $T(n) = \Theta(\lg n)$.

h. $T(n) = T(n-1) + \lg n$.

Answer: In this case, the master method does not work, we apply the recursion tree method to solve this recurrence.

Based on the formula: $\sum_{i=1}^{n} \lg(i)^{c} = \Theta[n \lg(n)^{c}]$ for nonnegative. Therefore the solution is $T(n) = \Theta(n \lg n)$.

i. $T(n) = T(n-2) + 2 \lg n$.

Answer: We guess that the solution is $T(n) = \Theta(n \lg n)$. Our method is to prove that $T(n) < cn \lg n$ for an appropriate choice of the constant c > 0. Substituting into the recurrence yields

$$T(n) = T(n-2) + 2\lg n$$

$$\leq c(n-2)\lg(n-2) + 2\lg n$$

$$= (cn-2c)\lg n + (cn-2c)\lg(n-2) - (cn-2c)\lg n + 2\lg n$$

$$= cn\lg n - [cn\lg n + 2\lg n - cn\lg(n-2) + 2c\lg(n-2)]$$

$$= cn\lg n - \left[cn\lg \frac{n}{n-2} + 2\lg n \cdot (n-2)^c\right]$$

$$\leq cn\lg n$$

where the last step holds for $cn \lg \frac{n}{n-2} + 2 \lg n \cdot (n-2)^c > 0$. e.g, n > 2.

j.
$$T(n) = \sqrt{n}T(\sqrt{n})$$
.

Answer: We guess that the solution is $T(n) = \Theta(n \lg n)$. Our method is to prove that $T(n) < cn \lg n$ for an appropriate choice of the constant c > 0. Substituting into the recurrence yields

$$T(n) = \sqrt{n}T(\sqrt{n})$$

$$\leq c\sqrt{n} \cdot \sqrt{n} \cdot \lg \sqrt{n} + n$$

$$= \frac{1}{2}cn\lg n + n$$

$$= cn\lg n - \left(\frac{1}{2}cn\lg n - n\right)$$

$$\leq cn\lg n$$

where the last step holds for $\frac{1}{2}c \lg n - 1 > 0$.