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Question for lecture 8 

 

 

Problem 23-4 on p. 578 

 

Alternative minimum-spanning-tree algorithms 

In this problem, we give pseudocode for three different algorithms.  Each one takes a 

graph as input and returns a set of edges T.  For each algorithm, you must either 

prove that T is a minimum spanning tree or prove that T is not a minimum spanning 

tree.  Also describe the most efficient implementation of each algorithm, whether or 

not it computes a minimum spanning tree.  

 

a.  

MAYBE-MST-A(G, w) { 

1     sort the edges into nonincreasing order of edge weights w; 

2     T � E; 

3         for each edge e, taken in nonincreasing order by weight { 

4       do if T – {e} is a connected graph 

5     then T � T – {e}; 

6         } 

7     return T; 

8 } 

 

Answer:  The first algorithm is a MST algorithm.  The procedure is shown as the 

graph below.  We get a MST with a total edge weight of 419134753 =+++++ .  

This algorithm implements a greedy algorithm.  The greedy function is to find 

and delete the next most weighted edge, such that after the deletion the graph is 

still a connected graph.   

 



 
 

Proof:   

 

Consider, we have two subparts of the final MST, 1T  and 2T .  According to the 

Optimal Substructure Theorem, the subtree 1T  with ( )111 , EVG  and subtree 2T  

with ( )222 , EVG  are MSTs as well.  There exist vertices 1Vu ∈′ , 1Vu ∈  and 2Vv ∈′ , 

2Vv ∈ . 

 

Suppose, we have edge ( ) Tvu ∉′′,  that gives a shorter path to connect subtree 1T  

and 2T .  Both ( ) Tvu ∉′′,  and ( ) Tvu ∈, meet the second requirement in the 

algorithm.  That is after the deletion of either ( ) Tvu ∉′′,  or ( ) Tvu ∈, , the rest of 

the graph is still a connected graph because it is two MSTs connected through 

either ( ) Tvu ∉′′,  or ( ) Tvu ∈,  depending on which one is deleted.  Therefore the 

decision of which one to delete is determined by the weight of these two edges.  If 

( ) Tvu ∉′′,  is lighter than ( ) Tvu ∈, , the algorithm would have picked ( ) Tvu ∉′′,  

instead of ( ) Tvu ∈, . 



 

Therefore, MAYBE-MST-A(G, w) is a MST algorithm. 

 

 

b.  

MAYBE-MST-B(G, w) { 

1     T � ; 

2         for each edge e, taken in arbitrary order { 

3            do if T ∪  {e} 

4         then T � T ∪  {e}; 

5         } 

6     return T; 

7 } 

 

Answer:   The second algorithm is not a MST algorithm.  The operations of the 

pseudocode are shown as below.  We get a tree structure with a total weight of 

5691387316 =+++++ .  Obviously, 4156 > .  This is not a MST algorithm. 

 

 
 



 
 

Proof: 

 

Consider we have two subparts of the final MST, 1T  and 2T .  According to the 

Optimal Substructure Theorem, the subtree 1T  with ( )111 , EVG  and subtree 2T  

with ( )222 , EVG  are MSTs as well.  There exist vertices 1Vu ∈′ , 1Vu ∈  and 2Vv ∈′ , 

2Vv ∈ . 

 

Suppose we have edges ( ) Tvu ∉′′,  and ( ) Tvu ∈, .  There are two different cases to 

consider after this assumption: 

1. Edge ( ) Tvu ∉′′,  and edge ( ) Tvu ∈,  do not form a circle when both of them 

exist at the same time.   If we delete both of them at the same time, the rest of 

the graph would become three individual MSTs.  This is a confliction with the 

presupposition that there are only two MSTs before the operation of adding 

either ( ) Tvu ∉′′,  or ( ) Tvu ∈,  into the picture.  Therefore this case will never 

happen. 

2. Edge ( ) Tvu ∉′′,  and edge ( ) Tvu ∈,  form a circle when both of them exist at 

the same time.  Based on the algorithm, the last inserted one between 

( ) Tvu ∉′′,  and ( ) Tvu ∈,  would be deleted, leaving the first inserted one.  At 

the same time, the algorithm also says the order of the insertion is random.  

Therefore, there is no guarantee that the earlier inserted ones are also the 

lighter ones. 

 

Therefore, MAYBE-MST-B(G, w) is not a MST algorithm. 

 



c.  

MAYBE-MST-C(G, w) { 

1     T � ; 

3         for each edge e, taken in arbitrary order by weight { 

4      do T � T ∪  {e}; 

5    if T has a cycle c { 

6                     Then let e’ be a maximum-weight edge on c; 

7                     T � T – {e};   

8                 } 

9          } 

10     return T; 

11 } 

 

Answer:  The third algorithm is a MST algorithm.  The procedure is shown as the 

graph below.  We get a MST with a total weight of 419134753 =+++++ .   

The algorithm also implements a greedy algorithm.  The greedy function is to find 

the most weighted edge in the current existing circle and delete that edge.  If no 

circle currently exists, continue adding a random edge until the next circle 

appears. 

 

 
 



 
 

Proof: 

 

Consider we have two subparts of the final MST, 1T  and 2T .  According to the 

Optimal Substructure Theorem, the subtree 1T  with ( )111 , EVG  and subtree 2T  

with ( )222 , EVG  are MSTs as well.  There exist vertices 1Vu ∈′ , 1Vu ∈  and 2Vv ∈′ , 

2Vv ∈ . 

 

Suppose we have edge ( ) Tvu ∉′′,  that gives a shorter path to connect subtrees 1T  

and 2T .  There are two different cases to consider after this assumption: 

1. Edge ( ) Tvu ∉′′,  and edge ( ) Tvu ∈,  do not form a circle when both of them 

exist at the same time.  If we delete both of them at the same time, the rest of 

the graph would become three individual MSTs.  This is a confliction with the 

presupposition that there are only two MSTs before the operation of adding 

either ( ) Tvu ∉′′,  or ( ) Tvu ∈,  into the picture.  Therefore this case will never 

happen. 

2. Edge ( ) Tvu ∉′′,  and edge ( ) Tvu ∈,  form a circle when both of them exist at 

the same time.  Based on the algorithm, the more weighted one between 

( ) Tvu ∉′′,  and ( ) Tvu ∈,  would be deleted, leaving the lighter one.  If 

( ) Tvu ∉′′,  gives a shorter path to connect subtrees 1T  and 2T , ( ) Tvu ∉′′,  

would have been chosen instead of ( ) Tvu ∈, . 

 

Therefore, MAYBE-MST-C(G, w) is a MST algorithm. 

 


