
Student: Yu Cheng (Jade)

ICS 412

Homework #3

October 07, 2009

Homework #3

Exercise 1: Explain why a spin-lock is not a good idea on a single processor, single machine.

Answer: There is a bad side and a good side of spin-locks. The process holding the spin-lock does nothing

but waiting when it is allocated by the CPU. So it burns the CPU cycles and slows down other

processes. On the other hand, in the absence of tread priorities, spin-lock usually provides a

faster responding time since it waits and constantly checks on the lock that this process is

waiting for.

A single processor machine, however, does not benefit from the mechanism in the good side.

This is due to the context swathing. In other words, the machine is pretending to be

multithreaded. Whatever lock the spin-lock process is waiting for would not become available

while the spin-lock process is allocated to run by the CPU because it would be the only process

running in that time slice. The states for all other processes remain the same. The lock becomes

available after the execution of the corresponding thread, and the spin-lock thread learns about

this information the next time when it gets to run. This is same versus Blocked/Ready

mechanism as far as CPU involvement goes. Therefore, a single processor machine does not gain

a faster responding time by using the spin-lock and does not save the context switching

overhead. The only thing it does is busy waiting, which is a waste of CPU cycles.

Exercise 2: Condition variable implementations typically provide a signal_all() function to wake up all

threads blocked on the condition variable. (In Pthreads it's pthread_cond_broadcast().) Consider

the following code fragments for the Bounded Buffer Producer Consumer problem, for an

arbitrary number of producers and consumers, written in OO Pseudo-Code. mutex and cond are a

lock and a condition variable, respectively, both defined elsewhere in the code and visible by

producers and consumers.

Producer: Consumer:

... ...

mutex.lock(); mutex.lock()

while(buffer.isFull()) while(buffer.isEmpty());

 cond.wait(mutex); cond.wait(mutex);

buffer.insert(); buffer.remove();

cond.signal_all(); cond.signal_all();

mutex.unlock(); mutex.unlock();

... ...

Explain why if the calls to signal_all() were replaced by calls to signal() the code would not

behave properly. What would be the problem? Give a concrete sequence of events for which this

code would misbehave. Assume that condition variables are FIFO: upon a call to signal() the

thread that had placed the first call to wait() is awakened.

Answer: Let’s Assume function call signal() is used in the code, and we have a buffer of size one, two

Consumer processes, and two Producer processes. We can simultaneously have multiple

processes waiting in the blocked state, say two Producer processes. Now a Consumer process

comes in and executes the signal call, which wakes up the first blocked Producer process. But

before the wakened Producer process gets to run, the second Consumer is assigned to run by the

CPU. This Consumer process checks for the buffer.isEmpty condition, since the previous

Consumer just took away the only element in the buffer, this Consumer would go in to wait and

block. Then the wakened Producer process executes and signal the second Producer process to

wake up. The second Producer process would enter block state immediately since the buffer is

still full. At this stage one Consumer process and one Producer are done, the other Consumer

and Producer processes are both waiting. We stuck.

Let’s consider the same situation with signal_all() function calls. Since once one process adds

or deletes successfully, it wakes up all processes that are in the blocked wait state, the processes

would stay in blocked state for a relatively shorter time, while enter and leave the wait state at a

relatively faster rate. While in the awaked state, they continuously try to obtain the lock and

further try to add or delete based on the buffer condition until they eventually accomplished the

task.

The two scenarios can be represented using the following UML interaction diagrams:

Function call signal() is used:

Buffer P-1 P-2 C-1 C-2

Full : : : :
 [] TRYLOCK : : :
 | [] TRYLOCK : :
 | | [] TRYLOCK :
 | | | [] TRYLOCK
 [] LOCKED | | |
 [] WAIT | | |
 [] UNLOCK | | |
 | [] LOCKED | |
 | [] WAIT | |
 | [] UNLOCK | |
 | | [] LOCKED |
Empty | | [] DEL |
 | | [] SIGNAL |
 | | [] UNLOCK |
 | | : [] LOCKED
 | | : [] WAIT
 | | : [] UNLOCK
 [] WAKEUP | : |
 [] TRYLOCK | : |
Full [] ADD | : |
 [] SIGNAL | : |
 [] UNLOCK | : |
 : [] WAKEUP : |
 : [] TRYLOCK : |
 : [] WAIT : |
 : [] UNLOCK : |
 : | : |

Function call signal_all() is used:

Buffer P-1 P-2 C-1 C-2

Full : : : :
 [] TRYLOCK : : :
 | [] TRYLOCK : :
 | | [] TRYLOCK :
 | | | [] TRYLOCK
 [] LOCKED | | |
 [] WAIT | | |
 [] UNLOCK | | |
 | [] LOCKED | |
 | [] WAIT | |
 | [] UNLOCK | |
 | | [] LOCKED |
Empty | | [] DEL |
 | | [] SIGNAL_ALL |
 | | [] UNLOCK |
 | | : [] LOCKED
 | | : [] WAIT
 | | : [] UNLOCK
 [] WAKEUP | : |
 [] TRYLOCK | : |
Full [] ADD | : |
 [] SIGNAL_ALL | : |
 [] UNLOCK | : |
 : [] WAKEUP : |
 : [] TRYLOCK : |
 : [] WAIT : |
 : [] UNLOCK : |
 : | : [] WAKEUP
 : | : [] TRYLOCK
 : | : [] LOCKED
Empty : | : [] DEL
 : | : [] SIGNAL_ALL
 : | : [] UNLOCK
 : [] WAKEUP : :
 : [] TRYLOCK : :
 : [] LOCKED : :
Full : [] ADD : :
 : [] SIGNAL_ALL : :
 : [] UNLOCK : :
 : : : :

Exercise 3: We consider a program in which we have two kinds of threads. Adder threads ad 1 to a shared

counter. Subtracter threads subtract � from the shared counter (where � is an integer � 0).

There can be an arbitrary numbers of Adders and Subtracters arrivals (possibly a finite number of

them). The counter is set to zero initially. Here are the code's requirements:

• The counter should never be negative.

• The counter should never stay at a value � � as long as there is a subtracter in the

system.

• Subtracters need to block until they can safely do the subtraction (i.e., without making

the counter negative).

Consider the following implementation based on Semaphores:

Three Semaphores with initial values:

mutex_counter: 1

mutex_sub: 1

notZero: 0

Adder: Subtracter:

L1 P(mutex_counter); L5 P(mutex_sub);

L2 counter++; L6 for (i = 0; i < N; i++)

L3 V(mutex_counter); L7 P(notZero);

L4 V(notZero); L8 V(mutex_sub);

 . . . L9 P(mutex_counter);

 L10 counter -= N;

 L11 V(mutex_counter);

 . . .

a. Would there be a problem if semaphore mutex_counter where used instead of semaphore

mutex_sub in lines L5 and L8? If so, which one? If not, why?

Answer: Yes, there will be a dead-lock problem. Originally, when subtracter enters the mutex_sub

protected section, it waits for the notZero counter to go up to �, and then puts notZero back to

zero and exits the mutex_sub protected section. Later on it subtracts �. Since at this point the

counter variable is at least �, this ensures the counter does not become negative.

After the modification, changing from mutex_sub to mutex_counter, the subtracter obtains the

mutex_counter lock, and waits for notZero to go up to � before releasing the mutex_counter lock.

This courses problems. If the subtracter holds the mutex_coutner lock, the adder wouldn’t get to

run, the notZero would never go up to �, which is what the subtracter is waiting for. This is,

therefore, a dead lock.

The scenario can be represented using the following UML interaction diagrams:

L5, L8 are changed to mutex_counter:

 Subtracter Adder

 : :
 : :
 [] TRY mutex_counter = 1 :
 [] SET mutex_counter = 0 :
 [] TRY notZero < N :
 [] WAIT notZero :
 | [] TRY mutex_counter = 0
 | [] WAIT mutex_counter
 | |

b. Would there be a problem if lines L8 and L9 were switched? If so, which one? If not, why?

Answer: No, I don’t think there will be a serious problem. Originally, when subtracter enters the

mutex_sub protected section, it waits for the notZero counter to go up to �, and then puts notZero

back to zero, exits the mutex_sub protected section, and then obtain the mutex_counter

semaphore. After the modification, even through L9 is within the mutex_sub protected block; the

subtracter would still be waiting for notZero to go up to � before acquiring the mutex_counter.

This allows the adder to continue working until noZero reaches �.

The scenario can be represented using the following UML interaction diagrams:

L8, L9 are changed to mutex_counter:

 Subtracter Adder

 : :
 : :
 [] TRY mutex_sub = 1 :
 [] SET mutex_sub = 0 :
 [] TRY notZero < N :
 [] WAIT notZero :
 | [] TRY mutex_counter = 1
 | [] SET mutex_counter = 0
 | [] counter ++
 | [] SET mutex_counter = 1
 | [] SET notZero ++
 [] TRY notZero < N :
 | [] TRY mutex_counter = 1
 | [] SET mutex_counter = 0
 | [] counter ++
 | [] SET mutex_counter = 1
 | [] SET notZero ++
 [] TRY notZero < N :
 | [] TRY mutex_counter = 1
 | [] SET mutex_counter = 0
 | [] counter ++
 | [] SET mutex_counter = 1
 | [] SET notZero ++
 [] TRY notZero >= N :
 [] TRY mutex_counter = 1 :
 [] SET mutex_counter = 0 :
 [] SET mutex_sub = 1 :
 [] counter -= N :
 [] SET mutex_counter = 1 :
 : :

c. Would there be a problem if lines L3 and L4 were switched? If so, which one? If not, why?

Answer: No, I don’t think there will be any serious problem, other than the subtracter might need to wait

a little extra time to obtain the mutex_counter semaphore after exiting the mutex_sub protected

section and ready to subtract � from the counter.

The scenario can be represented using the following UML interaction diagrams:

L3, L4 are changed to mutex_counter:

 Subtracter Adder

 : :
 : :
 [] TRY mutex_sub = 1 :
 [] SET mutex_sub = 0 :
 [] TRY notZero < N :
 [] WAIT notZero :
 | [] TRY mutex_counter = 1
 | [] SET mutex_counter = 0
 | [] counter ++
 | [] SET notZero ++
 | [] SET mutex_counter = 1
 [] TRY notZero < N :
 | [] TRY mutex_counter = 1
 | [] SET mutex_counter = 0
 | [] counter ++
 | [] SET notZero ++
 | [] SET mutex_counter = 1
 [] TRY notZero < N :
 | [] TRY mutex_counter = 1
 | [] SET mutex_counter = 0
 | [] counter ++
 | [] SET notZero ++
 | [] SET mutex_counter = 1
 [] TRY notZero >= N :
 [] SET mutex_sub = 1 :
 [] TRY mutex_counter = 1 :
 [] SET mutex_counter = 0 :
 [] counter -= N :
 [] SET mutex_counter = 1 :
 : :

d. Using the same style of pseudo-code as in Exercise #2, write an equivalent implementation using

one lock and one condition variable, and no semaphores.

Answer: In the following code, there is a lock, mutex, and a conditional variable, cond.

 Adder: Subtracter:

 : :

L1 mutex.lock(); L5 mutex.lock();

L2 count++; L6 while(count < N)

L3 cond.signal_all(); L7 cond.wait(mutex);

L4 mutex.unlock(); L8 counter -= N;

 : L9 cond.signal_all();

 L10 mutex.unlock();

 :

