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Exercise 1 Algorithm time complexity analysis 

Question: What is the time complexity of the algorithm described below.  Detail the answer using a 

diagram, or any other useful representation. 

Generator(n, symbols, s) returns array { 

# Pre-conditions: 

# � � 1 
# � � size of the array ����	
� 
# All(1 � � � �, � � � � �, ����	
���� ! �  ����	
����) 
# 

# Post-condition 

# All(� � � where � � size of outputs, 	��������� ! �  	���������) 
 

 	������ �  ����	
�;  
 for � � 1 � � � 1 { 
  � � 0; 
  for each �
�� in 	������ { 
   for each ����	
 in ����	
� { 
    # concatenates elem any symbol. 

    ������� � �	�����������
��, ����	
 ; 
    � ! !; 
   } 

  } 

  	������ � ����; 
 } 

 return 	������; 
} 

Answer: This is a brute force way to generate all possible 
-mers with a length of �.  The outer loop goes 
from 1 to � � 1.  It give � � 1 rounds.  The inner most loop goes from 1 to the size of the array 
����	
�, in the context of DNA analysis, it would be 4.  The middle loop execution rounds vary 
as the function executes.  It starts at the size of ����	
�, which is 4, and increases to 
16, 64, 256, and so on.  So the time complexity of this function can be expressed as: 

� & � ! �' & � ! �( & � ! � ! �)*+ & � � �' ! �( ! �, ! � ! �)  

� �' & ��)*+ � 1 
� � 1  . 



The time complexity of this given function is . /01&20345*+6
0*+ 7 � .��)8+  � .��) . 

Exercise 2 Greedy approach to motif finding 

Question: Find the two closest sequences in a �-size input.  For the selected sequences find the positions �+ 

and �' that optimize the 9�	:���, ;<= .  Use a greedy approach, search of the motif in the other 
sequences � � 2 sequences. 

Answer: The >:��?��	��@���:�A function firstly takes two rows and compute the best motifs for them 
in a brute force way.  Then, it loops through the rest of the rows.  There are � � 2 of them.  
Assuming that the motifs on the previous rows are already selected, algorithm finds out the best 

motif on the current row and appends it to the list of the best motifs. 

 

The starting two sequences are selected applying hamming distance in the A�����>�B�� 
function.  The two sequences that have the least hamming distance are closer to each other than 

any other pairs of sequences.  Computing the closest sequences using hamming distance was 

done in a brute force manner, which is pretty time-consuming. 

 

/* -------------------------------------------------------------------------- */ 

/** 

 * Function searches for the starting positions of the motifs that produce the 

 * best score on the first two rows of the DNA matrix in a brute force manner. 

 * Then updates the starting positions on the rest of the rows assuming that 

 * the previous motifs have been already chosen. 

 * 

 * Select the two rows that have the least hamming distance. 

 * 

 * @param bestMotif The array of indexes to be filled in with the starting 

 *        positions that give the best score according this greedy algorithm. 

 * 

 */ 

static void greedymotifsearch(int * bestMotif) 

{ 

    int * startpos; 

    int   end, i; 

    end = cols - length; 

 

    /* Select the two rows that have the least hamming distance. */ 

    hammingswap(); 

 

    /* Allocate space for the aray storing the temporary starting positions. */ 

    startpos = (int *)calloc(rows, sizeof(int)); 

 

    /* Search for the best motifs on the first two rows in a Brute force way. */ 

    for (startpos[0] = 0; startpos[0] < end; startpos[0]++) { 



        for (startpos[1] = 0; startpos[1] < end; startpos[1]++) { 

            if (score(startpos,  2) > 

                score(bestMotif, 2)) { 

                bestMotif[0] = startpos[0]; 

                bestMotif[1] = startpos[1]; 

            } 

        } 

    } 

 

    /* Record the starting positions of the best motifs found on the first two rows. */ 

    startpos[0] = bestMotif[0]; 

    startpos[1] = bestMotif[1]; 

 

    /* Search the rest t-2 rows assuming the previous motifs are all selected. */ 

    for (i = 2; i < rows; i++) { 

        for (startpos[i] = 0; startpos[i] < end; startpos[i]++) { 

            if (score(startpos,  i + 1) > 

                score(bestMotif, i + 1)) 

                bestMotif[i] = startpos[i]; 

        } 

 

        /* Record the starting position giving the best score on the current row. */ 

        startpos[i] = bestMotif[i]; 

    } 

 

    free(startpos); 

} 

 

/* -------------------------------------------------------------------------- */ 

/** 

 * Function conputes the hamming distances between all pairs of rows in the DNA 

 * matrix and records the pair that has the least hamming distance.  Then 

 * function swaps the selected rows, minrow1 and minrow2, with the first and the 

 * second row in the DNA matrix respectively.  The updated DNA matrix's first 

 * two rows have the least hamming distance of all rows. 

 * 

 */ 

static void hammingswap() 

{ 

    int i, j, k; 

    int min, minrow1, minrow2; 

    min = cols; 

 

    /* Search for the two rows having the least hamming distance brute forcely. */ 

    for (i = 0; i < rows; i++) { 

        int distance; 

        distance = 0; 

        for (j = i + 1; j < rows; j++) { 

            for (k = 0; k < cols; k++) { 

                if (dna[i * cols + k] != dna[j * cols + k]) 

                    distance++; 

            } 

            if (distance < min) { 

                min = distance; 

                minrow1 = i; 

                minrow2 = j; 

            } 



        } 

    } 

 

    /* Swap the selected rows with the first two rows in the DNA matrix. */ 

    swaprows(minrow1, minrow2); 

} 

 

/* -------------------------------------------------------------------------- */ 

/** 

 * Function computes the score for a paticular set of motifs.  It sums up the 

 * max character counts on each column that starts from the specified positions 

 * and ends at positions that are motif-length away from the starting positions. 

 * 

 * @param startpos The array of starting indexes in the DNA matrix. 

 * @param rowcount The number of rows to scan to compute the score. 

 * 

 */ 

static int score(const int * startpos, int rowcount) 

{ 

    int j; 

    int total; 

 

    /* Loop lenght many columns and sum up the scores. */ 

    total = 0; 

    for (j = 0; j < length; j++) { 

        int i; 

        int max; 

        int sum[4] = { 0, 0, 0, 0 }; 

 

        /* Only scan specified number of sequences. */ 

        for (i = 0; i < rowcount; i++) { 

            char ch; 

            ch = dna[i * cols + startpos[i] + j]; 

            sum[(int)ch]++; 

        } 

 

        /* Add the one with the greatest count in this column to total. */ 

        max = sum[0]; 

        for (i = 1; i < 4; i++) 

            max = sum[i] > max ? sum[i] : max; 

        total += max; 

    } 

 

    return total; 

} 

Question: Analyze the complexity of your new greedy motif finding algorithm 1. 

Answer: In A�����>�B�� function, we scan through the rows two times and the columns once in a 
nested loop.  It would take .��' & �  time.  The �B��:	B� function (helper functions are not 
copied here, please refer the source code submitted.) just loop once through the length of the 

sequences.  It would take .��  time.  Clearly .��' & �  is a higher order term that defines the 
time complexity of this function. 



 

��	:� function is used in >:��?��	��@���:�A function.  In the ��	:� function, we have a 
nested loop that takes .�
 & � , where 
 is the length of the 
-mer motif, and � is the specified row 
count to scan.  � is upper bounded by �. 
 

In the rest of  >:��?��	��@���:�A function, we have two parts.  The first part searches for the 
best motif in two rows in a brute force way.  It takes .��� � 
 ! 1 ' C 2
 & �� � .�
��� � 
 '� �
.��' & 
 & � .  The second part loops through the rest of the sequences.  It takes .��� � 2 C
�� � 
 ! 1 C 2
 & �� � .��' & � & 
 .  Apparently the first part is the higher order term that 
defines the time complexity.  Because � should be substantially larger than 
.  Normally, we 
would have a lot more nucleotides on each of the sequence we are trying to analyze than the 

number of samples we are dealing with.  So, after A�����>�B�� function, it takes .��' & 
 & � . 
 

Sum them together, the original greedy algorithm portion and the hamming distance searching 

portion, this algorithm is in the order of .��' & � ! �' & 
 & � � .��' & 
 & � . 

Question: Instead of choosing the closest 2 sequences from the set, select 2 sequences randomly.  Repeat 

the process D number of times defining D tuples ��+, �'  of starting positions in sequence 1 and 
sequence 2.  Chose the most reoccurring tuple of starting positions and find the remaining 

starting positions in your � � 2 sequences. 

Answer: The >:��?��	��@���:�A function is the same as the previous greedy algorithm, only the 
selection of the first two rows to execute is different.  Instead of randomly selecting, This 

algorithm implemented hamming distance to select the closest sequences of the rows. 

 

The omitted sections are identical with the function copied above. 

/* -------------------------------------------------------------------------- */ 

/** 

 *  ... 

 * 

 * Randomly select two rows to be the first two executed by the greedy method. 

 * 

 *  ... 

 * 

 */ 

static void greedymotifsearch(int * bestMotif) 

{ 

    ... 

 

    /* Randomly select two rows and swap them into the front of the DNA matrix. */ 

    randomswap(); 

 

    ... 

} 

 

/* -------------------------------------------------------------------------- */ 

/** 



 * Randomly choose two rows from the DNA matrix, and swap the chosen rows, row1 

 * and row2, with the first and the second row in the DNA matrix respectively. 

 * The updated DNA matrix's first two rows are a random selection of all rows. 

 * 

 */ 

static void randomswap() 

{ 

    int row1, row2; 

 

    /* Randomly select row1 and row2 from all rows. */ 

    row1 = rand() % rows; 

    row2 = (1 + row1 + (rand() % (rows - 1))) % rows; 

 

    /* Swap the randomly selected rows with the first two rows in the DNA matrix. */ 

    swaprows(row1, row2); 

} 

/* -------------------------------------------------------------------------- */ 

/** 

 *  ... 

 */ 

static int score(const int * startpos, int rowcount) 

{ 

    ... 

} 

 

Question: Analyze the complexity of your new greedy motif finding algorithm 2. 

Answer: The :��?	��B�� function doesn’t take any time in comparison.  The entire time consumption 
comes from the main routine, which is the original >:��?��	��@���:�A function.  As we 
decided it takes .��' & 
 & � , this algorithm as a whole, therefore, takes .��' & 
 & �  time. 

 

The two algorithms are in the same time complexity order.  Algorithm 2 should be faster in a 

small scale inputs than algorithm 1 though, as it does not spend time searching for the first pair 

of sequences to scan. 

Question: What can you say about the algorithms 1 and 2? (Compare both approaches in algorithm 1 and 2 

from a time complexity and qualitative standpoints)  Which algorithm do you believe will do a 

better job at finding the optimal motif?  Do we have a guarantee for that?  

 

Support your analysis using example of your choice.  The sample sequences are generated. 

a. Random DNA sample generating 

Answer: In my implementation, I tested these two algorithms with randomly generated DNA matrices.  I 

insert a command line specified motif into all sequences in random positions.  The command 

line also takes a rate of mutation, from 0 to 1.  This allows the motifs to be different from each 

other by a certain ratio. 



 

The following example demonstrates this feature.  

original motif, and a motif mutation ratio to be 0.1 and 0.9 for the first and second execution 

respectively.  The DNA matrix has 15 sequences and the length of the sequences is 75 

nucleotides long.  In this case, I look for 

already know the motifs.  The random seed is given as 0.  With the seed, I will be able to 

reproduce these sequences later if I need to.

 

If we specify the mutation 

I specify the mutation ratio to be 0.9, the sequences of 

mutation ratio is as high as 0.9, the specified motifs don’t ready exist anymore.  They might as 

well be random nucleotide sequences.  The analysi

score and not trustworthy anymore.

 

In the following 

output represent the DNA matrix generated with the specified parameters.  This output format 

would be later used as the 

The following example demonstrates this feature.  I choose a sequence of 20 

original motif, and a motif mutation ratio to be 0.1 and 0.9 for the first and second execution 

respectively.  The DNA matrix has 15 sequences and the length of the sequences is 75 

nucleotides long.  In this case, I look for 
-mers with size 20, of course because I’m “cheating”.  I 
already know the motifs.  The random seed is given as 0.  With the seed, I will be able to 

reproduce these sequences later if I need to. 

If we specify the mutation ratio to be 0.1, we can still “see” the sequence

I specify the mutation ratio to be 0.9, the sequences of �’s are basically 
mutation ratio is as high as 0.9, the specified motifs don’t ready exist anymore.  They might as 

well be random nucleotide sequences.  The analysis output in this case would have too low of a 

score and not trustworthy anymore. 

In the following screenshot, each row represents a DNA sequences and the entire standard 

output represent the DNA matrix generated with the specified parameters.  This output format 

would be later used as the input for the greedy motif searching algorithms.

 

I choose a sequence of 20 �’s to be the 
original motif, and a motif mutation ratio to be 0.1 and 0.9 for the first and second execution 

respectively.  The DNA matrix has 15 sequences and the length of the sequences is 75 

e 20, of course because I’m “cheating”.  I 

already know the motifs.  The random seed is given as 0.  With the seed, I will be able to 

ratio to be 0.1, we can still “see” the sequences of �’s in there.  While if 
are basically “disappeared”.  If the 

mutation ratio is as high as 0.9, the specified motifs don’t ready exist anymore.  They might as 

s output in this case would have too low of a 

screenshot, each row represents a DNA sequences and the entire standard 

output represent the DNA matrix generated with the specified parameters.  This output format 

input for the greedy motif searching algorithms.  



b. Greedy Motif Searching starting with the closest sequences

Answer: Then I implemented the two greedy motif finding algorithms.  In the first algorithm, hamming 

distance was used to select the closest sequences of the DNA matrix.  The closest two sequences 

are used as the initial sequences to compute the initial best motif.

 

 

Greedy Motif Searching starting with the closest sequences 

Then I implemented the two greedy motif finding algorithms.  In the first algorithm, hamming 

as used to select the closest sequences of the DNA matrix.  The closest two sequences 

are used as the initial sequences to compute the initial best motif. 

 

Then I implemented the two greedy motif finding algorithms.  In the first algorithm, hamming 

as used to select the closest sequences of the DNA matrix.  The closest two sequences 

 



In the following example, the 

function as the input.  We also specified

we are looking for.

generated DNA sequenc

function parameters that what my motifs should look like.

 

 

From the program output, we saw that DNA sequences were rearranged since the 11

sequences were decided by the hamming distance algori

input sequences.  Then the best motif array was generated indicating the starting indexes of the 

motifs found on each sequence.  Also, by knowing the starting indexes and the input DNA 

matrix, we were able to retri

third column of the output.

 

Apparently, by taking a low mutation ratio, 0.1, we still have most of the 

maximum score for the 

had 273, which should be pretty good.
 

In the following example we have a comparison of low and high mutation ratios.

see the difference.  First, we can really see our sequences of 

each sequence.  Then, notice that we had a bad score as the sequences found don’t really close to 

each other.  Because the way our scoring schema works, for a completely random comparison, we 

would still get 1/
greedy algorithm is helping us to make relatively good choices rather than completely random 

outputs, in which case, we would expect around 

In the following example, the randomly generated DNA matrix was piped into the motif finding 

n as the input.  We also specified the size of the DNA matrix and the length of the motif 

we are looking for.  Here the length of the 
-mers are the same as what I
sequences.  Again, I’m “cheating”.  I already know from the DNA 

parameters that what my motifs should look like. 

From the program output, we saw that DNA sequences were rearranged since the 11

sequences were decided by the hamming distance algorithm to be the closest sequences of the 15 

input sequences.  Then the best motif array was generated indicating the starting indexes of the 

motifs found on each sequence.  Also, by knowing the starting indexes and the input DNA 

matrix, we were able to retrieve the exact 
-mers found on each sequence.  They are shown as the 
third column of the output. 

Apparently, by taking a low mutation ratio, 0.1, we still have most of the 

maximum score for the 
-mers, with lengths of 20 and sample size 15, is 
which should be pretty good. 

In the following example we have a comparison of low and high mutation ratios.

see the difference.  First, we can really see our sequences of �’s anymore as the 
each sequence.  Then, notice that we had a bad score as the sequences found don’t really close to 

each other.  Because the way our scoring schema works, for a completely random comparison, we 

/4 amount of scores.  In this example is would be 75
greedy algorithm is helping us to make relatively good choices rather than completely random 

outputs, in which case, we would expect around 75. 

piped into the motif finding 

the size of the DNA matrix and the length of the motif 

as what I’ve inserted into my 

know from the DNA generating 

 

From the program output, we saw that DNA sequences were rearranged since the 11th and 12th 

thm to be the closest sequences of the 15 

input sequences.  Then the best motif array was generated indicating the starting indexes of the 

motifs found on each sequence.  Also, by knowing the starting indexes and the input DNA 

mers found on each sequence.  They are shown as the 

Apparently, by taking a low mutation ratio, 0.1, we still have most of the �’s in our 
-mers.  The 
ple size 15, is 15 C 20 � 300.  We 

In the following example we have a comparison of low and high mutation ratios.  We can clearly 

’s anymore as the 
-mers found on 
each sequence.  Then, notice that we had a bad score as the sequences found don’t really close to 

each other.  Because the way our scoring schema works, for a completely random comparison, we 

75.  We got 150 because the 
greedy algorithm is helping us to make relatively good choices rather than completely random 



c. Greedy Motif Searching starting with a randomly selected two sequen

Answer: The second greedy algorithm implemented used a randomly selected pair of sequences to be the 

first two rows algorithm execution.  Since randomization is used, we need to take one extra 

parameter to seed the random number generator.  Also we wil

 

Greedy Motif Searching starting with a randomly selected two sequences

The second greedy algorithm implemented used a randomly selected pair of sequences to be the 

first two rows algorithm execution.  Since randomization is used, we need to take one extra 

parameter to seed the random number generator.  Also we will be able t

 

ces 

The second greedy algorithm implemented used a randomly selected pair of sequences to be the 

first two rows algorithm execution.  Since randomization is used, we need to take one extra 

l be able to reproduce the output. 

 



The same DNA matrix was used as the input data in the following example.  We will be able to 

compare the output

 

 

As the random seed changes the first pair of sequences selected changes.  The first execution 

took sequences 14 and 4 as the brute force portion of the greedy algorithm.  The second 

execution took sequences 1 and 13.  The third execution took sequences 7 and 13.

example above the value of 

as algorithm 1. 

 

Also I tested the effect of different mutations ratios.  The result is, of course, the same as 

algorithm 1.  A greater mutation ratio gives a lower score and the analysis is not trustworthy.

The same DNA matrix was used as the input data in the following example.  We will be able to 

compare the outputs better. 

As the random seed changes the first pair of sequences selected changes.  The first execution 

ook sequences 14 and 4 as the brute force portion of the greedy algorithm.  The second 

execution took sequences 1 and 13.  The third execution took sequences 7 and 13.

example above the value of D � 3, and the best score provided was 275

Also I tested the effect of different mutations ratios.  The result is, of course, the same as 

algorithm 1.  A greater mutation ratio gives a lower score and the analysis is not trustworthy.

The same DNA matrix was used as the input data in the following example.  We will be able to 

 

As the random seed changes the first pair of sequences selected changes.  The first execution 

ook sequences 14 and 4 as the brute force portion of the greedy algorithm.  The second 

execution took sequences 1 and 13.  The third execution took sequences 7 and 13.  In the 

275, which is about the same 

Also I tested the effect of different mutations ratios.  The result is, of course, the same as 

algorithm 1.  A greater mutation ratio gives a lower score and the analysis is not trustworthy. 



 

The randomly selected two seque

the two executions.  The score is much lower providing a great mutation ratio.

d. Which algorithm 

guarantee for that?

Answer: For randomly generated DNA sequenc

Spending time looking for the closest pair did do us any good.  

time spent looking f

main routine – greedy 

 

For random sample algorithm 1 is not any better than algorithm 2.  It

because the samples are completely 

substantially closer?  

they are close with each other doesn’t have anything to do with the motifs!  Because, 

are randomly mutated as well!

organisms are closely related with 

overall closer target sequences and a overall closer motifs on these sequences.

 

The randomly selected two sequences are the same because the same seed is passed in both of 

the two executions.  The score is much lower providing a great mutation ratio.

Which algorithm do you believe will do a better job at finding the optimal motif

guarantee for that? 

For randomly generated DNA sequence samples, algorithm 1 doesn’t have

Spending time looking for the closest pair did do us any good.  Of course, in comparison, this 

time spent looking for the closest pair of sequences is inferior than the time consumption the 

greedy searching. 

For random sample algorithm 1 is not any better than algorithm 2.  It

because the samples are completely random.  How can we trust the selected pair to be any 

substantially closer?  In fact, they are not, they are just happen to be slightly closer.

they are close with each other doesn’t have anything to do with the motifs!  Because, 

are randomly mutated as well!  This is, however, no t the case in real organisms.  If two 

organisms are closely related with each other in the context of evolution, we should expect a 

target sequences and a overall closer motifs on these sequences.

 

nces are the same because the same seed is passed in both of 

the two executions.  The score is much lower providing a great mutation ratio. 

at finding the optimal motif? Do we have a 

, algorithm 1 doesn’t have any advantage.  

Of course, in comparison, this 

or the closest pair of sequences is inferior than the time consumption the 

For random sample algorithm 1 is not any better than algorithm 2.  It makes a lot of sense, 

trust the selected pair to be any 

they are just happen to be slightly closer.  The way 

they are close with each other doesn’t have anything to do with the motifs!  Because, the motifs 

in real organisms.  If two 

each other in the context of evolution, we should expect a 

target sequences and a overall closer motifs on these sequences.   



So, in the real world research, under the circumstance that the researchers already know that 

they are looking at some sequences that are related with each other closely, it might be beneficial 

to spend time looking for the closest pair and make the best guess to start with. 

 

On the other hand, although the greedy algorithm implementing searching for the closest 

sequences might provide a good starting point, we still need to evaluate whether it worth the 

time.  As we saw in algorithm 2, by running it several times, we would be able to pick a pretty 

good overall score.  We implemented hamming distance as the quantifier of how close the 

sequences are.  It doesn’t cost much time, so we’ll say yes, to this little extra effort.  But it doesn’t 

do that good of a job comparing the sequences either!  It would greatly depend on the 

implementation to say which is better.  I imagine the second approach, algorithm 2, would be a 

better choice in most cases, especially if we aren’t so sure about the phylogenetic relations of the 

sequences we are looking at. 

 

There is no guarantee for either of these two algorithms to be better than the other.  Just like 

there is no guarantee that either of these two algorithms provides the best option.  If we are 

going for a guarantee, we would take the brute force approach for all input sequences.  The 

reason implementing greedy algorithms is that we would rather trade optimization with time 

consumption. 


