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Exercise 1 

Question: Using dynamic programming, propose an algorithm that calculates the total number of possible 

paths in an LCS (Longest Common Subsequence) grid, similar to the one shown below.  Your 

algorithm finds only the total number of paths, without listing them 

 

The size of the grid is �� � �� where � � 0, � � 0.  Note that at vertex �	, 
� of the example grid, 

2 paths are possible.  Either coming east from �	, 
 � 1� or coming south from �	 � 1, 
�. 

a. Propose the algorithm. 

Answer: First construct the simple recursive algorithm.  It is expressed in the following pseudocode. 

/** 

 * Simple Recursive Algorithm 

 * 

 * Function takes the row count and column count of a node in a LCS grid graph, and 

 * returns the number of possible paths that we can take to get to this node starting 

 * from the top left node (1, 1). 

 * 

 * @param 
 The row count of the current node. 
 * @param � The column count of the current node. 
 * 

 * @return The number of possible paths. 

 */ 

int CountPath(
, �) { 
 if 
 � 1 or � � 1 



  return 1 ;    // 1 for first row and column 

 return CountPath(
 � 1, �) + CountPath(
, � � 1); // Summation of two directions 

} 

The following example illustrates this algorithm.  Every vertex in the tree structure represents a 

node in the grid graph.  The numbers associated with the edges going upward from the vertices 

represent the numbers of possible paths to visit the nodes.  The child nodes represent the 

previous node on the possible paths. 

 

For a �4 � 3� grid, 4 columns and 3 rows, we have 10 possible paths to visit the right bottom 

node.  This number is computed by computing all the nodes in the following tree.  Clearly, we’ve 

computed the sub tree rooted at node �3, 2� two times, the sub tree rooted at �2,2� three times 

and so on. 
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Sub trees were computed repetitively.  To avoid this, dynamic programming is used.  We keep a 

table with � rows and � columns.  The table contains the values of possible paths for node �	, 
�.  

Within the algorithm, instead of computing the values whenever they’re needed, we look up the 

table and try to fetch the value.  If the node that we are looking for is not yet recoded in the table, 

we would go ahead computing it, like what we did in the recursive algorithm.  In this case, we 

have to record this computed value in our table.  This way, further steps don’t have to re-

compute this value.  In other words, we are building a�� � �� table (Dynamic Programming 

Matrix).  The entries of this table denote the numbers of possible paths to visit the nodes. 

/** 

 * Dynamic Programming Algorithm 

 * 

 * Function takes the row count and column count of a node in a LCS grid graph, and 

 * returns the number of possible paths that we can take to get to this node starting 

 * from the top left node (1, 1). 

 * 

 * @param 
 The row count of the current node. 
 * @param � The column count of the current node. 
 * @param � The dynamic programming matrix. 

 * 

 */ 

void CountPath(
, �, �) { 

 if 
 � 1 or � � 1 
  return 1 ;    // 1 for first row and column 



 int ���, ����; 
 if ����,� doesn’t contain a valid value {  // Obtain value of node �
 � 1, �� 
  ��� � CountPath(
 � 1, �);   // if possible, otherwise update 

  ����,� � ���;    // the recording table 

 } 

 else  

  ��� � ����,�; 
 if ��,��� doesn’t contain a valid value {  // Obtain value of node �
, � � 1� 
  ���� � CountPath(
, � � 1);   // if possible, otherwise update 

  ��,��� � ����;    // the recording table 

 } 

 else  

  ���� � ��,���; 
 return ��� � ����;     // Summation of two directions 

} 

Apply the dynamic programming algorithm to the same example, we have the following 

procedures.  The labels with numeric numbers indicate the order of corresponding dynamic 

programming matrix entry that was queried.  The faded out sections indicate the duplicated 

computations in the simple recursive algorithm, which, in this algorithm, were done by looking 

up the dynamic programming matrix.  The actual nodes that were computed in this algorithm 

are represented by the dark colored nodes.  As we can see, we’ve saved many operations. 

 

The order of query operations happened in the dynamic programming matrix entries.   The 

alphabetic letters indicate the order. 

 	/
 1 2 3 4 

 1 none none returned returned 

 2 returned d. queried e. queried f. queried 

 3 returned c. queried b. queried a. queried 

The order of filling in the dynamic programming matrix cells.  The numbers of possible paths to 

each node is recorded in the dynamic programming matrix.  The letters indicate the order. 

 	/
 1 2 3 4 

 1 — — — — 

 2 — a. recorded c. recorded e. recorded 

 3 — b. recorded d. recorded f. recorded 



The values that were recorded as the algorithm executes.  They indicate the numbers of possible 

paths to visit that nodes. 

 	/
 1 2 3 4 

 1 1 1 1 1 

 2 1 2 3 4 

 3 1 3 6 10 

b. What is the complexity of your algorithm? 

Answer: The simple recursive algorithm spends time building the tree, and it is slow, since the tree size 

grows fast as the height goes up.   The dynamic programming algorithm save many branches of 

the tree and therefore increase the runtime performance.  In order to answer by how much the 

dynamic programming approach saves, we can look at it from a different perspective.  The 

algorithm is in fact building the dynamic programming matrix.  Once the matrix is built, the last 

entry of the matrix is the number of possible paths from top left to the bottom right.  On top of 

that, there are query operations.  We can easily implement a collector data structure that has  �1�  access time.  If we do so, the time consumption for query operations should be 

considerably inferior.  Therefore the overall time complexity is building the table, which is  �� � ��. 

c. Suppose that each vertex has an in-degree of 3 instead of 2, what would be the complexity of the 

new algorithm? 

Answer: The algorithm is basically the same; we just need to sum up the number of paths contributed by 

the third possible previous node.  In the tree representation below, I didn’t show the faded out 

braches.  But we can see that every node showing as “yes” in the graph contains a sub tree if we 

were using the simple recursive algorithm.  We’ve saved even more operations versus having two 

possible precedence paths. 

/** 

 * Dynamic Programming Algorithm 

 * 

 * Function takes the row count and column count of a node in a LCS grid graph, and 

 * returns the number of possible paths that we can take to get to this node starting 

 * from the top left node (1, 1).  The grid graph contains diagonal lines. 

 * 

 * @param 
 The row count of the current node. 
 * @param � The column count of the current node. 
 * @param � The dynamic programming matrix. 

 * 

 */ 

void CountPath(
, �, �) { 

 if 
 � 1 or � � 1 
  return 1 ;    // 1 for first row and column 



 int ���, ����, !	"#���; 
 if ����,� doesn’t contain a valid value {   

  ��� � CountPath(
 � 1, �);   // Obtain value of node �
 � 1, �� 
  ����,� � ���;    // if possible, otherwise update 

 }      // the recording table 

 else  

  ��� � ����,�; 
if ����,��� doesn’t contain a valid value { 

  !	"#��� � CountPath(
 � 1, � � 1);  // Obtain not value �
 � 1, � � 1� 
  ����,��� � !	"#���;   // if possible, otherwise update 

 }      // the recording table 

 else       

  !	"#��� � ����,���; 
 if ��,��� doesn’t contain a valid value {   

  ���� � CountPath(
, � � 1);   // Obtain value of node �
, � � 1� 
  ��,��� � ����;    // if possible, otherwise update 

 }      // the recording table 

 else  

  ���� � ��,���; 
 return ��� � ���� � !	"#���;   // Summation of two directions 

} 

 

The order of operations and the operations happened in the dynamic programming matrix 

entries.   The alphabetic letters indicate the order. 

 	/
 1 2 3 4 

 1 returned returned returned returned 

 2 returned d. queried e. queried f. queried 

 3 returned c. queried b. queried a. queried 

The order of the dynamic matrix was filled in.  The order of the numbers of possible paths to 

each node is recorded in the dynamic programming matrix.  The letters indicate the order. 

 	/
 1 2 3 4 

 1 — — — — 

 2 — a. recorded c. recorded e. recorded 

 3 — b. recorded d. recorded f. recorded 



The values that were recorded as the algorithm executes.  They indicate the number of possible 

paths to visit that node. 

  1 2 3 4 

 1 1 1 1 1 

 2 1 3 5 7 

 3 1 5 13 25 

We’ve queried more times for dynamic programming matrix entries.  The number of 

computations it took to fill up the table stays the same.  Hence, the overall time complexity stays 

the same,  �� � ��. 

Exercise 2 

Question: The score of a multiple alignment can be defined as the sum of the entropies of the columns, 

which are defined to be: 

$ �� log( ���)*+  

where ��  is the frequency of the letter 
 in ,- in a given column.  Note that, the more conserved 

the column is, the larger the entropy sore is.  Refer to the example seen in class.  To align a 

sequence to a profile, one can replace the sore matrix delta with the entropy formula given above 

and use the pair-wise dynamic programming algorithm seen in class. 

 

The scores of aligning the following sequence and the following profile 

Sequence: ./,  Profile: 
. � ,. 0 ,. 0 � 1  

1 2 3. � ,. 0 ,. 0 �. / ,
  

The scores for the columns are: 

34�5�6789:;< � 44 log 44 � 0 

34�5�6789:;= � 14 log 14 � 24 log 24 � 14 log 14 � �1.5 

34�5�6789:;@ � 34 log 34 � 14 log 14 � �0.81 



The alignment score is: 

34�5�*8BC;:D;E � 34�5�6789:;< � 34�5�6789:;= � 34�5�6789:;@  

� 0 � 1.5 � 0.81 

� �2.31 . 
a. Based on the pair-wise dynamic programming algorithm seen in class, write the recurrence 

equation that align a sequence with a profile using the entropy formula as a scoring function.  

Remember that, as seen in class, for every �	, 
� where 	 � 0 and 
 � 0, there are 3 possible 

alternatives. 

1. Aligning position 	 in sequence 3 with a gap 

2. Aligning position 
 in profile F with a gap 

3. Aligning position 	 in sequence 3 with position 
 in profile F 

Answer: I would initialize the first cell "G,G � 0.  The rest of the cells following the recurrence relation 

described below.  There are three possible paths.  If we start from "B��,H��, it’s aligning the 	, 
th 

entry with the corresponding profile �5��	��H.  If we start from "B,H��, then we are aligning a gap 

with the corresponding profile �5��	��H.  If we start from "B��,H, then we are aligning the 	, 
th 

entry with a gap in the profile.  We would consider the maximum of these three paths and record 

it as the cost of the current node 	, 
.  Therefore, we have the following recurrence relation: 

"B,H � �"
 I"B��,H�� � 34�5�B,HJKL7MB8DN"B,H�� � 34�5�"�"JKL7MB8DN"B��,H � 34�5�B,HJKL7MB8D"�"
P 

Further examining this relation, we have 34�5�B,HJKL7MB8D"�" � 0.81 because all three gaps in the 

profile and one different entry as the 	th element in the sequence.  We can also pre-calculate the 

values of  34�5�"�"JKL7MB8DN  for each column.  So the recurrence relation is: 

"B,H � �"
 I"B��,H�� � 34�5�B,HJKL7MB8DN"B,H�� � 34�5�"�"JKL7MB8DN"B��,H � 0.81 ����Q R� �5�� �S� �"T�� T���U�P 
  1 2 3 4 5 6 7 

  A G G T — C — 

 0 — G — T T C G 

  T G — A A C — 34�5�"�"JKL7MB8DN :  1.5 0.81 0.81 1.5 1.5 0.81 0.81 

 If we use symbols \, <, and ^ to represent coming from "B��,H��, "B,H��, and "B��,H  respectively, 

the table in this example would look like: 



  1 2 3 4 5 6 7 

  A G G T — C — 

 0 — G — T T C G 

  T G — A A C — 

0 0 <-1.5 <-2.31 <-3.12 <-4.62 <-6.12 <-6.93 <-7.74  

G ^-0.81 \-2 \-1.5 <-2.31 <-3.81 <-5.31 <-6.12 <-6.93 

T ^-1.62 \-2.31 ^-2.31 \-3 \-3.12 <-4.62 <-5.43 <-6.24 

C ^-2.43 ^-3.11 \^-3.11 \-3.31 ^-3.93 \-5.12 \-4.62 <-5.43 

Then we would back track to find out the alignment for the specified profile with the example 

sequence: 0/.. 

  A G G T — C — 

 0 — G — T T C G 

  T G — A A C — 

0 0 <-1.5 <-2.31 <-3.12 <-4.62 <-6.12 <-6.93 <-7.74  

G ^-0.81 \-2 \-1.5 <-2.31 <-3.81 <-5.31 <-6.12 <-6.93 

T ^-1.62 \-2.31 ^-2.31 \-3 \-3.12 <-4.62 <-5.43 <-6.24 

C ^-2.43 ^-3.11 \^-3.11 \-3.31 ^-3.93 \-5.12 \-4.62 <-5.43 

This indicates the following alignment between the given profile and the sequence: 

  A G G T — C — 

Profile:  — G — T T C G 

  T G — A A C — 

  V V V V V V V 

Sequence:  — G — T — C — 

By observing the sequence and profile, because they are simple enough to look at, it’s clear that 

the result alignment is a reasonable alignment output.  The score of this alignment is: 

34�5�*8BC;:D;E � 34�5�6789:;< � 34�5�6789:;= � W � 34�5�6789:;X  

� �1.5 � 0 � 0.81 � 0.81 � 1.5 � 0 � 0.81 

� �5.43 . 
It is the same as what we obtained from tracing the algorithm in the table above. 

b. Use the recurrence equations to align the sequence .0/.,0 and the profile: 

  1 2 3 4 5 6 7 

  A G G T — C — 

Profile:  — G — T T C G 

  T G — A A C — 



Fill up the following corresponding dynamic programming matrix. 

Answer: Follow the procedure illustrated as the previous simple example, we obtain the following matrix. 

  1 2 3 4 5 6 7 

  A G G T — C — 

 0 — G — T T C G 

  T G — A A C — 

0 0 <-1.5 <-2.31 <-3.12 <-4.62 <-6.12 <-6.93 <-7.74  

C ^-0.81 \-2 \-2.31 \-2.43 <-3.93 <-5.43 <-6.24 <-7.05 

G ^-1.62 \^-2.81 \-2 <-2.81 \-3.93 <-5.43 \-6.24 <-6.43 

T ^-2.43 \-3.12 ^-2.81 <^-3.62 \-3.62 <-5.12 <-5.93 <-6.74 

C ^-3.24 ^-3.93 ^-3.62 \-4.31 ^-4.43 \-5.62 \-5.12 <-5.93 

A ^-4.05 \^-4.74 ^-4.43 \^-5.12 ^-5.12 \-5.93 ^-5.93 \^-6.74 

G ^-4.86 ^-5.55 \-4.74 \-5.43 ^-6.02 <-6.74 \^-6.74 \-6.93 

We trace back to obtain the alignment: 

  1 2 3 4 5 6 7 

  A G G T — C — 

 0 — G — T T C G 

  T G — A A C — 

0 0 <-1.5 <-2.31 <-3.12 <-4.62 <-6.12 <-6.93 <-7.74  

C ^-0.81 \-2 \-2.31 \-2.43 <-3.93 <-5.43 <-6.24 <-7.05 

G ^-1.62 \^-2.81 \-2 <-2.81 \-3.93 <-5.43 \-6.24 <-6.43 

T ^-2.43 \-3.12 ^-2.81 <^-3.62 \-3.62 <-5.12 <-5.93 <-6.74 

C ^-3.24 ^-3.93 ^-3.62 \-4.31 ^-4.43 \-5.62 \-5.12 <-5.93 

A ^-4.05 \^-4.74 ^-4.43 \^-5.12 ^-5.12 \-5.93 ^-5.93 \^-6.74 

G ^-4.86 ^-5.55 \-4.74 \-5.43 ^-6.02 <-6.74 \^-6.74 \-6.93 

From this back track, we have the following alignment: 

 1 2 3 4 5 6 7 8 

 A G G T — C — — 

Profile: — G — T T C — G 

 T G — A A C — — 

 V V V V V V V V 

Sequence: C G — T — C A G 

We can compute the overall score of this alignment, which should be the same as in the table. 

34�5�*8BC;:D;E � 34�5�6789:;< � 34�5�6789:;= � W � 34�5�6789:;Y  

� �2 � 0 � 0.81 � 0.81 � 1.5 � 0 � 0.81 � 1 

� �6.93 . 


