Student: Yu Cheng (Jade) Math 311 Homework #4 September 23, 2009

Section 3.2

Question:	W is a subset of R^2 consisting of vectors of the form
	$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
	In each case determine whether W is a subspace of \mathbb{R}^2 . If W is a subspace, then give a geometric description of W .
2.	$W = \{x: x_1 - x_2 = 2\}$
Answer:	<u>Question 1:</u> Is the zero vector in W? No because $0 - 0 \neq 2$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \notin W, \theta \notin W$.
	<u>Conclusion:</u> W is not a subspace.
8.	$W = \{x: x_1 x_2 = 0\}$
Answer:	<u>Question 1:</u> Is the zero vector in W? Yes because $0 \cdot 0 = 0$, so $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in W, \theta \in W$.
	<u>Question 2:</u> If the vector $x \in W$ and the vector $y \in W$, is $(x + y) \in W$? No, an counter example
	can be, $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ while $x + y = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin W$.
	<u>Conclusion:</u> W is not a subspace.
Question 18:	Let a be a fixed vector in R^3 , and define W to be the subset of R^3 given by
	$W = \{x: a^T x = 0\}$
	Prove that W is a subspace of R^3 .
Answer:	<u>Question 1:</u> Is the zero vector in W? Yes because $a^T \theta = 0$, so, $\theta \in W$.
	<u>Question 2:</u> If the vector $x \in W$ and the vector $y \in W$, is $(x + y) \in W$?

$$x \in W \Rightarrow a^{T}x = 0$$

$$y \in W \Rightarrow a^{T}y = 0$$

$$\Rightarrow a^{T}x + a^{T}y = 0$$

$$\Rightarrow a^{T}(x + y) = 0 \text{ (according to Theorem 9 - d)}$$

$$\Rightarrow x + y \in W.$$

<u>*Question 3:*</u> If the vector $x \in W$ is $kx \in W$ where $k \in \mathbb{R}$?

 $x \in W \Rightarrow a^{T}x = 0$ $\Rightarrow k \cdot a^{T}x = 0$ $\Rightarrow a^{T}(kx) = 0 \text{ (accoring to Theorem 9 - c)}$ $\Rightarrow kx \in W.$

 $\underline{Conclusion:} W$ is a subspace.

Question 30: If *U* and *V* are subsets of \mathbb{R}^n , then the set U + V is defined by

$$U + V = \{x: x = u + v, u \text{ in } U, and v \text{ in } V\}$$

Prove that if U and V are subspaces of \mathbb{R}^n , then U + V is also a subspace of \mathbb{R}^n .

Answer:	<u>Question 1:</u> Is the zero vector in $U + V$? Yes because $\theta \in U, \theta \in V \Rightarrow (\theta + \theta) \in (U + V) \Rightarrow \theta \in (U + V)$.
	<u>Question 2:</u> If the vector $x \in (U + V)$ and the vector $y \in (U + V)$, is $(x + y) \in (U + V)$?
	$x \in (U+V) \Rightarrow x = u_x + v_x$
	$y \in (U+V) \Rightarrow x = u_y + v_y$
	$\Rightarrow x + y = (u_x + v_x) + (u_y + v_y)$
	$= (u_x + u_y) + (v_x + v_y)$
	$= u_{xy} + v_{xy}$ (since both <i>U</i> and <i>V</i> are subspaces).
	$\because (u_{xy} + v_{xy}) \in (U + V)$
	$\therefore (x+y) \in (U+V) .$

<u>*Question 3:*</u> If the vector $x \in (U + V)$ is $kx \in (U + V)$ where $k \in \mathbb{R}$?

$$x \in (U + V) \Rightarrow x = u + v$$

$$\Rightarrow k \cdot x = k \cdot (u + v)$$

$$= ku + kv$$

$$= u' + v' \text{ (since both U and V are subspaces)}$$

$$\because (u' + v') \in (U + V)$$

$$\therefore kx \in (U + V).$$

<u>*Conclusion:*</u> If U and V are subspaces of \mathbb{R}^n , then U + V is also a subspace of \mathbb{R}^n .

Question 31:	Let U and V be subsets of \mathbb{R}^n . Prove that the intersection, $U \cap V$ is also a subspace of \mathbb{R}^n .
Answer:	<u>Question 1:</u> Is the zero vector in $U \cap V$? Yes because $\theta \in U, \theta \in V \Rightarrow \theta \in U \cap V$.
	<u>Question 2:</u> If the vector $x \in U \cap V$ and the vector $y \in U \cap V$, is $(x + y) \in U \cap V$?
	$x \in U \cap V \Rightarrow x \in U, x \in V$
	$y \in U \cap V \Rightarrow y \in U, y \in V$
	$\Rightarrow (x + y) \in U \text{ (since } x \in U, y \in U)$
	$\Rightarrow (x + y) \in V \text{ (since } x \in V, y \in V)$
	$\Rightarrow (x+y) \in U \cap V .$
	<u>Question 3:</u> If the vector $x \in U \cap V$ is $kx \in U \cap V$ where $k \in \mathbb{R}$?
	$x \in U \cap V \Rightarrow x \in U, x \in V$
	$\Rightarrow kx \in U \text{ (since } x \in U)$
	$\Rightarrow kx \in V \text{ (since } x \in V)$
	$\Rightarrow kx \in U \cap V .$

<u>Conclusion</u>: If U and V be subsets of \mathbb{R}^n . The intersection, $U \cap V$ is also a subspace of \mathbb{R}^n .