Student: Yu Cheng (Jade) Math 311 Homework #5 October 10, 2009

Section 3.3

Question: Refer to the following vectors either show that $Sp(S) = R^3$ or give an algebraic specification for Sp(S). If $Sp(S) \neq R^3$, then give a geometric description of Sp(S).

$v = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	$w = \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}$	$x = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$
$y = \begin{bmatrix} -2\\ -2\\ 2 \end{bmatrix}$	$z = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$	

12.
$$S = \{v\}$$

Answer: $Sp(S) = \left\{ x \in \mathbb{R}^3 : x = a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, a \text{ is any real number} \right\}$. This is a line in \mathbb{R}^3 through the origin and (1, 2, 0). The equivalence equations for this line are: x = t, y = 2t, z = 0. This is derived as below:

$$\begin{bmatrix} 1 & b_1 \\ 2 & b_2 \\ 0 & b_3 \end{bmatrix} \to R_2 - 2R_1 \to \begin{bmatrix} 1 & b_1 \\ 0 & b_2 - 2b_1 \\ 0 & b_3 \end{bmatrix}$$

 \Rightarrow b_1 is any real number, $b_2 = 2b_1$, $b_3 = 0$.

14. $S = \{v, w\}$

Answer: $Sp(S) = \left\{ x \in \mathbb{R}^3 : x = a_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}$. This is a plane in \mathbb{R}^3 covering the origin, (1, 2, 0), and (0, -1, 1). The equivalence equations for this plan is: y - 2x + z = 0. This is derived as below:

$$\begin{array}{cccc} 1 & 0 & b_1 \\ 2 & -1 & b_2 \\ 0 & 1 & b_3 \end{array} \end{array} \rightarrow R_2 \leftrightarrow R_3 \rightarrow \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_3 \\ 2 & -1 & b_2 \end{bmatrix} \\ \rightarrow R_3 - 2R_1 \rightarrow \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_3 \\ 0 & -1 & b_2 - 2b_1 \end{bmatrix} \\ \rightarrow R_3 + R_2 \rightarrow \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_3 \\ 0 & 0 & b_2 - 2b_1 + b_3 \end{bmatrix} \\ \Rightarrow b_2 - 2b_1 + b_3 = 0 \, .$$

16. $S = \{v, w, x\}$

Answ	er: $Sp(S) = \left\{ x \in \mathbb{R}^3 : x = a_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, a_1, a_2, \text{ and } a_3 \text{ are any real numbers} \right\}.$ In
	other words, $Sp(S) = R^3$. This is derived as below:
	$ \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \to R_2 \leftrightarrow R_3 \to \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix} $
	$ ightarrow R_3 - 2R_1 ightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$
	$ \rightarrow R_3 + R_2 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \end{bmatrix} $
	$\rightarrow -\frac{1}{2}R_3 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$
	$ \rightarrow R_2 + R_3 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
	$ ightarrow R_1 - R_3 ightarrow egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
	\Rightarrow v, x, and y are linearly indipendent vectors
	$\Rightarrow Sp(S) = R^3 .$

Question 20: Let *S* be the set given as $S = \{v, w\} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}$. For each vector given below, determine whether the vector is in Sp(S). Express those vectors that are in Sp(S) as a linear combination of v and w.

a.
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
b. $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ **c.** $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ **d.** $\begin{bmatrix} 2\\3\\1 \end{bmatrix}$ **e.** $\begin{bmatrix} -1\\2\\4 \end{bmatrix}$ **f.** $\begin{bmatrix} 1\\1\\3 \end{bmatrix}$

 $Sp(S) = \left\{ x \in \mathbb{R}^3 : x = a_1 \begin{bmatrix} 1\\2\\0 \end{bmatrix} + a_2 \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}.$ This is a plane in \mathbb{R}^3 **Answer:** covering the origin, (1, 2, 0), and (0, -1, 1). The equivalence equations for this plan is: y - 2x + z = 0.Γ11 Γ11 ΓΛI Г11

a.
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 is on this plane because $1 - 2 \times 1 + 1 = 0$. $\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\2\\0 \end{bmatrix} + \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$, so $a_1 = a_2 = 1$.
b. $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ is not on this plane because $1 - 2 \times 1 - 1 = -2 \neq 0$.
c. $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ is on this plane because $2 - 2 \times 1 + 0 = 0$. $\begin{bmatrix} 1\\2\\0 \end{bmatrix} = \begin{bmatrix} 1\\2\\0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$, so $a_1 = 1, a_2 = 0$.
d. $\begin{bmatrix} 2\\3\\1 \end{bmatrix}$ is on this plane because $3 - 2 \times 2 + 1 = 0$. $\begin{bmatrix} 2\\3\\1 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1\\2\\0 \end{bmatrix} + \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$, so $a_1 = 2, a_2 = 1$.
e. $\begin{bmatrix} -1\\2\\4 \end{bmatrix}$ is not on this plane because $2 - 2 \times (-1) + 4 = 8 \neq 0$.
f. $\begin{bmatrix} 1\\1\\3 \end{bmatrix}$ is not on this plane because $1 - 2 \times 1 + 3 = 2 \neq 0$.

Question: Give an algebraic specification for the null space and the range of the given matrix *A*.

30.
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -1 & 5 \end{bmatrix}$$

Answer: Reduce the matrix we have:

$$\begin{bmatrix} 1 & -1 & 2\\ 2 & -1 & 5 \end{bmatrix} \to R_2 - 2R_1 \to \begin{bmatrix} 1 & -1 & 2\\ 0 & 1 & 1 \end{bmatrix}$$
$$\to R_1 + R_2 \to \begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & 1 \end{bmatrix}.$$

<u>Null space</u>: The kernel is $\mathcal{N}(A) = \begin{cases} x \in \mathbb{R}^3 : x = x_3 \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix}, x_3 \text{ is any real number} \end{cases}$. This is a line in \mathbb{R}^3 through the origin and (-3, -1, 1).

<u>*Range:*</u> The column space can be expressed as a linear combination of the independent column vectors: $Sp(A) = \left\{x \in R^2 : x = a_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + a_2 \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, a_1 and a_2 are any real numbers $\right\}$ which is the same as $Sp(A) = R^2$.

32.
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \\ 1 & 5 \end{bmatrix}$$

Answer:

Reduce the augmented matrix we have:

$$\begin{bmatrix} 1 & 3 & b_1 \\ 2 & 7 & b_2 \\ 1 & 5 & b_3 \end{bmatrix} \rightarrow R_2 - 2R_1 \rightarrow \begin{bmatrix} 1 & 3 & b_1 \\ 0 & 1 & b_2 - 2b_1 \\ 1 & 5 & b_3 \end{bmatrix}$$
$$\rightarrow R_3 - R_1 \rightarrow \begin{bmatrix} 1 & 3 & b_1 \\ 0 & 1 & b_2 - 2b_1 \\ 0 & 2 & b_3 - b_1 \end{bmatrix}$$
$$\rightarrow R_1 - 3R_2 \rightarrow \begin{bmatrix} 1 & 0 & 7b_1 - 3b_2 \\ 0 & 1 & b_2 - 2b_1 \\ 0 & 2 & b_3 - b_1 \end{bmatrix}$$
$$\rightarrow R_3 - 2R_2 \rightarrow \begin{bmatrix} 1 & 0 & 7b_1 - 3b_2 \\ 0 & 1 & b_2 - 2b_1 \\ 0 & 1 & b_2 - 2b_1 \\ 0 & 0 & b_3 + 3b_1 - 2b_2 \end{bmatrix}$$

<u>Null space</u>: The kernel is $\mathcal{N}(A) = \left\{ x \in \mathbb{R}^2 : x = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$. In other words, $\mathcal{N}(A) = \{\theta\}$.

<u>*Range:*</u> The column space can be expressed as a linear combination of the independent column vectors: $Sp(A) = \left\{ x \in R^3 : x = a_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 3 \\ 7 \\ 5 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}$ which can also be expressed as z + 3x - 2y = 0. It is a plane in R^3 covering the origin, (1, 2, 1), and (3, 7, 5).

Question 50: Identify the range and the null space for each of the following.

a. The $(n \times n)$ identity matrix

Answer: <u>Null space:</u> There's no free variable in an identity matrix. We can get the zero matrix only by multiplying *I* with the zero vector. Therefore the null space is

$$\mathcal{N}(A) = \begin{cases} x \in \mathbb{R}^{n} \colon x = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$\Rightarrow \mathcal{N}(A) = \{\theta\}.$$

<u>*Range:*</u> The column space can be expressed as a linear combination of the independent column vectors:

$$Sp(A) = \left\{ x \in \mathbb{R}^n : x = a_1 \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + a_n \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}, a_1, a_2, \dots, a_n, \text{ are any real numbers} \right\}$$
$$\Rightarrow Sp(A) = \mathbb{R}^n .$$

b. The $(n \times n)$ zero matrix

Answer: <u>Null space</u>: They are all free variables in the zero matrix. We can get the zero matrix by multiplying θ with the any vector. Therefore the null space is:

$$\mathcal{N}(A) = R^n$$
.

<u>Range:</u> The column space can be expressed as a linear combination of the independent column vectors, since they are all zero vectors, the column vectors span only the origin.

$$Sp(A) = \begin{cases} x \in R^n : x = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \end{cases}$$
$$\Rightarrow Sp(A) = \{\theta\}.$$

c. The $(n \times n)$ nonsingular matrix

Answer: <u>Null space</u>: By definition $Sx = \theta$ has only one solution for nonsingular matrix *S*. The solution is $x = \theta$. Therefore the null space is:

$$\mathcal{N}(A) = \left\{ x \in \mathbb{R}^{n} \colon x = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \right\}$$
$$\Rightarrow \mathcal{N}(A) = \left\{ \theta \right\}.$$

<u>*Range:*</u> The nonsingular matrix can be reduced to an identical matrix. The column space is therefore:

$$Sp(A) = R^n$$

Question 52: Let A be an $(m \times r)$ matrix and B an $(r \times n)$ matrix.

a. Show that $\mathcal{N}(B) \subseteq \mathcal{N}(AB)$.

Answer: Assuming vector $x \in \mathcal{N}(B)$, which means $Bx = \theta$, we would have $ABx = A(Bx) = A\theta = \theta$. So vector $x \in \mathcal{N}(AB)$ as well. Therefore, we've shown that any vector belongs to $\mathcal{N}(B)$ also belongs to $\mathcal{N}(AB)$. Hence, we have relation, $\mathcal{N}(B) \subseteq \mathcal{N}(AB)$

b. Show that $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$.

Answer: Assuming vector $y \in \mathcal{R}(AB)$ which means ABx = y, we would have ABx = A(Bx) = Ax' = y. So vector $y \in \mathcal{R}(A)$ as well. Therefore, we've shown that any vector belongs to $\mathcal{R}(AB)$ also belongs to $\mathcal{R}(A)$. Hence, we have relation, $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$.