Student: Yu Cheng (Jade) Math 311 Homework #6 October 17, 2009

Section 3.4

Question: Let W be the subspace of R^4 consisting of vectors of the form:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

Find a basis for W when the components of x satisfy the given conditions.

2. $x_1 + x_2 - x_3 + x_4 = 0$ $x_2 - 2x_3 - x_4 = 0$

Answer: If we consider x_3 and x_4 as the free variables, then we can express the other two variables as, $x_2 = 2x_3 + x_4$, $x_1 = x_3 - x_4 - 2x_3 - x_4 = -x_3 - 2x_4$. Therefore we have the following expression for the solution of this system:

$$x = \begin{bmatrix} -x_3 - 2x_4 \\ 2x_3 + x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

Hence we've shown W can be expressed as a linear combination of the two vectors listed above.

 $\left\{ \begin{bmatrix} -1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix} \right\} \text{ is a basis of the system.}$

4. $x_1 - x_2 + x_3 = 0$

Answer: If we consider x_1 and x_2 as the free variables, we can express x_3 as $-x_1 + x_2$. x_4 is obviously a free variable, since there's no restriction on the value of x_4 . Therefore we have the following expression for the solution of this system:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ -x_1 + x_2 \\ x_4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Hence we've shown W can be expressed as a linear combination of the three vectors listed above

$\left\{ \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	0 0 0 1) is a basis of the system
---	------------------	----------------------------

Question 10: Let W be the subspace described in Exercise 2. For each vector x that follows, determine whether x is in W. If x is in W, then express x as a linear combination of the basis vectors found in Exercise 2.

$$\mathbf{a.} \qquad x = \begin{bmatrix} -3\\ 3\\ 1\\ 1 \end{bmatrix}$$

Answer:

Plugging in $x_1 + x_2 - x_3 + x_4 = 0$, we have -3 + 3 - 1 + 1 = 0. Plugging in $x_2 - 2x_3 - x_4 = 0$, we have $3 - 2 \times 1 - 1 = 0$. So, vector x is in W.

$$x = \begin{bmatrix} -3\\3\\1\\1 \end{bmatrix} = 1 \times \begin{bmatrix} -1\\2\\1\\0 \end{bmatrix} + 1 \times \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix}.$$

b.
$$x = \begin{bmatrix} 0\\ 3\\ 2\\ -1 \end{bmatrix}$$

Answer: Plugging in $x_1 + x_2 - x_3 + x_4 = 0$, we have 0 + 3 - 2 - 1 = 0. Plugging in $x_2 - 2x_3 - x_4 = 0$, we have $3 - 2 \times 2 + 1 = 0$. So, vector x is in W.

$$x = \begin{bmatrix} 0\\3\\2\\-1 \end{bmatrix} = 2 \times \begin{bmatrix} -1\\2\\1\\0 \end{bmatrix} + (-1) \times \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix}$$

$$x = \begin{bmatrix} 7\\8\\3\\2 \end{bmatrix}$$

с.

Answer: Plugging in $x_1 + x_2 - x_3 + x_4 = 0$, we have $7 + 8 - 3 + 2 = 14 \neq 0$. So, vector x is not in W and can't be expressed as a linear combination of the basis vectors of W.

$$\mathbf{d.} \qquad x = \begin{bmatrix} 4\\ -2\\ 0\\ -2 \end{bmatrix}$$

Answer: Plugging in $x_1 + x_2 - x_3 + x_4 = 0$, we have 4 - 2 - 0 - 2 = 0. Plugging in $x_2 - 2x_3 - x_4 = 0$, we have $-2 - 2 \times 0 + 2 = 0$. So, vector x is in W.

$$x = \begin{bmatrix} 4 \\ -2 \\ 0 \\ -2 \end{bmatrix} = 0 \times \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + (-2) \times \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Question 12: Matrix *A* is given as $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 3 & 5 \end{bmatrix}$.

a. Find a matrix *B* in reduced echelon form such that *B* is a raw equivalency of *A*.

Answer: $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 3 & 5 \end{bmatrix} \rightarrow R_2 - R_1 \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 2 & 3 & 5 \end{bmatrix}$ $\rightarrow R_3 - 2R_1 \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\rightarrow R_3 \leftrightarrow R_2 \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\rightarrow R_1 - R_2 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

We obtain matrix above from A by taking row operations. It is, therefore, a row equivalency of A.

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

b. Find a basis for the null space of *A*.

Answer: From the solution for the previous question, we know that the reduced augmented matrix of the equation $Ax = \theta$ is $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Therefore we have the null space of *A*: $\mathcal{N}(A) = \left\{ x \in R^3 : x = a \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, a \text{ is any real number} \right\}.$ From the expression above, it's clear that a basis for the null space of A is $\begin{cases} -1 \\ -1 \\ 1 \end{cases}$.

c. Find a basis for the range of *A* that consists the columns of *A*. For each column of *A*, A_j that does not appear in the basis, express A_j as a linear combination of the basis vectors.

Answer: From the solution for the sub question **a**, we've learned that there are two linearly independent column vectors in *A*. If we adapt the form of matrix *B*, then the first two column vectors are linearly independent and can be used to form a basis for the range of *A*.

$$Sp(A) = \left\{ x \in \mathbb{R}^3 : x = a_1 \begin{bmatrix} 1\\1\\2 \end{bmatrix} + a_2 \begin{bmatrix} 1\\1\\3 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}.$$
$$\Rightarrow \left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix} \right\} \text{ is a basis for the range of } A.$$

The third column vector is, therefore, dependent and can be expressed as a linear combination of the first two vectors:

$$\begin{bmatrix} 2\\2\\5 \end{bmatrix} = 1 \times \begin{bmatrix} 1\\1\\2 \end{bmatrix} + 1 \times \begin{bmatrix} 1\\1\\3 \end{bmatrix}.$$

c. Exhibit a basis for the row space of *A*.

Answer: From the solution for the sub question **a**, we've learned that there are two linearly independent row vectors in *A*. If we adapted the form of matrix *B*, then the first two row vectors are linearly independent and can be used to form a basis for the row space of *A*.

$$RowSpace(A) = \left\{ x \in \mathbb{R}^3 : x = a_1 \begin{bmatrix} 1\\0\\1 \end{bmatrix} + a_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}$$
$$\Rightarrow \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\} \text{ is a basis for the row space of } A.$$

Question 18: Obtain a basis for the range of *A* using the technique of Example 7 in the textbook. Matrix *A* is given as: $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$.

$$Ven as: A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 3 & 5 \end{bmatrix}.$$

Answer: the range of A can be viewed as the row space of the matrix A^T , where

$$A^{T} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 2 & 2 & 5 \end{bmatrix} \rightarrow R_{2} - R_{1} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 2 & 2 & 5 \end{bmatrix}$$

$$\begin{array}{c} \rightarrow R_3 - 2R_1 \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \\ \rightarrow R_1 - 2R_2 \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \\ \rightarrow R_3 - R_2 \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = B^T \, .$$

The nonzero rows of the reduced matrix above form a basis of the row space of A^T . Consequently the nonzero columns of

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Are a basis for the span of *A*. Specifically, the solution is as below:

$$Sp(A) = \left\{ x \in \mathbb{R}^3 : x = a_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + a_2 \begin{bmatrix} 0\\0\\1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}.$$
$$\Rightarrow \left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ is a basis for the range of } A.$$

Question 22: Given the set *S*

$$S = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$$

а.

Find a subset of S that is a basis for Sp(S) using the technique illustrated in Example 6.

Answer:

We need to solve the dependence relation

$$x_1v_1 + x_2v_2 + x_3v_3 = \theta$$

And then determine which if the v_j 's can be eliminated. If V is the (2×3) matrix

$$V = [v_1, v_2, v_3]$$

Then the augmented matrix $[V|\theta]$ reduces to

The system of equations with augmented matrix above has solution

$$x_1 = \frac{1}{3}x_3$$
$$x_2 = \frac{4}{3}x_3$$

Where x_3 is unconstrained variable. In particular, the set *S* is linearly dependent. Moreover, taking $x_3 = 1$ yields $x_1 = 1/3$, $x_2 = 4/3$. Thus the linear combination $x_1v_1 + x_2v_2 + x_3v_3 = \theta$ becomes

$$\frac{1}{3}v_1 + \frac{4}{3}v_2 + v_3 = \theta$$

$$\Rightarrow v_3 = -\frac{1}{3}v_1 - \frac{4}{3}v_2.$$

It follows that v_3 is redundant and can be removed from the spanning set. The set $\{v_1, v_2\}$ is a linearly independent set and therefore a basis of the span of S.

$$Sp(S) = \left\{ x \in \mathbb{R}^2 : x = a_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}$$
$$= \mathbb{R}^2$$
$$\Rightarrow \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\} \text{ is a basis for the range of } S.$$

b. Find a basis for *SP*(*S*) using the technique illustrated in Example 7

Answer:

Let A = SP(S). The range of A can be viewed as the row space of the matrix A^{T} , where

$$A^{T} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \rightarrow R_{2} - 2R_{1} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & -3 \\ 3 & 2 \end{bmatrix}$$
$$\rightarrow R_{3} - 3R_{1} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & -3 \\ 0 & -4 \end{bmatrix}$$
$$\rightarrow -\frac{1}{3}R_{2} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & -4 \end{bmatrix}$$
$$\rightarrow R_{1} - 2R_{2} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & -4 \end{bmatrix}$$
$$\rightarrow R_{3} + 4R_{2} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = B^{T}.$$

The nonzero rows of the reduced matrix above form a basis of the row space of A^{T} . Consequently the nonzero columns of

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Are a basis for the span of *S*. Specifically, the solution is as below:

$$Sp(S) = \left\{ x \in \mathbb{R}^2 : x = a_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}$$
$$= \mathbb{R}^2$$
$$\Rightarrow \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \text{ is a basis for the range of } S.$$

Since the span of the given vectors is the entire R^2 , any two independent vectors in R^2 form a basis of SP(S).

Section 3.5

Question:	Determine by inspection why the given set S is not a basis for R^2 . (That is, either S is linearly dependent or S does not span R^2 .)				
	$u_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$u_3 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	$u_5 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$		
2.	$S = \{u_2\}$				
Answer:	The given set S is not a basis for R^2 because the vector given in the set S does not span R^2 . The conclusion is based on Theorem 9-2.				
	Theorem 9-2 tells us any set of fewer than p vectors in W does not span W , where W is a subspace of R^n with dim $(W) = p$. In this case, R^2 is W , and the dimension of R^2 is of course dim $(R^2) = 2 = p$. While we have only one vector in set S , because $1 < 2$, set S does not span R^2 and, therefore, can't be a basis of R^2 .				
4.	$S = \{u_2, u_3, u_5\}$				
Answer:	The given set S is not a basis for based on Theorem 9-1.	R^2 because S is not linearly indep	endent. This conclusion is		

Theorem 9-1 tells us any set of p + 1 or more vectors in W is linearly dependent, where W is a subspace of \mathbb{R}^n with $\dim(W) = p$. In this case, \mathbb{R}^2 is W, and the dimension of \mathbb{R}^2 is of course $\dim(\mathbb{R}^2) = 2 = p$. While we have only three vectors in set S, because $3 \ge 2 + 1$ holds, set S is linearly dependent and, therefore, can't be a basis of \mathbb{R}^2 .

Question: Use Theorem 9, property 3, to determine whether the given set is a basis for the indicated vector space.

$$v_1 = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix} \qquad v_3 = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} \qquad v_4 = \begin{bmatrix} -1\\ 3\\ 3 \end{bmatrix}$$

12. $S = \{v_1, v_2, v_3\}$ for R^3

Answer: Theorem 9-3 tells us that any set of p vectors that spans W is a basis for W. In this case, p = 3, and we have three vectors in S. So we just need to determine if the three vectors in S are linearly independent.

$$\begin{split} \begin{array}{ccc} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 1 & 2 & 0 \\ \end{split} \rightarrow R_2 + R_1 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \\ \end{bmatrix} \\ \rightarrow R_3 - R_1 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & -1 \\ \end{bmatrix} \\ \rightarrow R_3 - 2R_2 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ \end{bmatrix} \\ \rightarrow -R_3 \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \\ \rightarrow R_1 - R_3 \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}. \end{split}$$

The column vectors of the matrix above are the vectors in set *S*, and the column vectors are shown to be linearly independent. Therefore *S* satisfies the conditions for Theorem 9-3, $S = \{v_1, v_2, v_3\}$ is a basis R^3 .

14. $S = \{ v_2, v_3, v_4 \}$ for R^3

Answer: Theorem 9-3 tells us that any set of p vectors that spans W is a basis for W. In this case, p = 3, and we have three vectors in S. So we just need to determine if the three vectors in S are linearly independent.

$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 3 \\ 2 & 0 & 3 \end{bmatrix} \rightarrow R_2 \leftrightarrow R_1 \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix}$$
$$\rightarrow R_3 - 2R_1 \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 1 & -1 \\ 0 & 2 & -3 \end{bmatrix}$$
$$\rightarrow R_1 + R_2 \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 2 & -3 \end{bmatrix}$$
$$\rightarrow R_3 - 2R_2 \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$
$$\rightarrow -R_3 \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\rightarrow R_1 - 2R_3 \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\rightarrow R_2 + R_3 \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The column vectors of the matrix above are the vectors in set *S*, and the column vectors are shown to be linearly independent. Therefore *S* satisfies the conditions for Theorem 9-3, $S = \{v_2, v_3, v_4\}$ is a basis R^3 .

Question 22: Find a basis for $\mathcal{N}(A)$ and give the nullity and the rank of A

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 2 & -5 & 1 \end{bmatrix}$$

Answer: Reduce the augmented matrix of *A*

$$\begin{array}{cccc} -1 & 2 & 0 \\ 2 & -5 & 1 \end{array} \right] \rightarrow -R_1 \rightarrow \begin{bmatrix} 1 & -2 & 0 \\ 2 & -5 & 1 \end{bmatrix} \\ \rightarrow R_2 - 2R_1 \rightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & -1 & 1 \end{bmatrix} \\ \rightarrow -R_2 \rightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & -1 \end{bmatrix} \\ \rightarrow R_1 + 2R_2 \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \end{bmatrix}$$

There is one free variable x_3 . Since the kernel space can be expresses as a linearly combination of one vector, this vector itself forms a basis of $\mathcal{N}(A)$.

$$\mathcal{N}(A) = \left\{ x \in \mathbb{R}^3 : x = a \begin{bmatrix} 2\\1\\1 \end{bmatrix}, a \text{ is any real number} \right\}$$
$$\Rightarrow \left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\} \text{ is a basis for the null space of } A, \text{ and } nullity(A) = 1$$

From the reduced form of the original matrix, we learned that there are two independent column vectors , and they span the entire R^2 .

$$Sp(A) = \left\{ x \in \mathbb{R}^2 : x = a_1 \begin{bmatrix} -1\\ 2 \end{bmatrix} + a_2 \begin{bmatrix} 2\\ -5 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}$$
$$= \mathbb{R}^2$$
$$\Rightarrow \left\{ \begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ -5 \end{bmatrix} \right\} \text{ is a basis for the range of } A, \text{ and } rank(A) = 2 \text{ .}$$

Of course, any two independent vectors in \mathbb{R}^2 form a basis of Sp(A) in this case. Also notice rank(A) + nullity(A) = n, that we can derive rank(A) directly. rank(A) = n - nullity(A) = 3 - 1 = 2.

Question 26: Find a basis for $\mathcal{R}(A)$ and give the nullity and the rank of A

$$A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 4 & 2 & 4 \\ 2 & 1 & 5 & -2 \end{bmatrix}$$

Answer: Reduce the augmented matrix of *A*

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 4 & 2 & 4 \\ 2 & 1 & 5 & -2 \end{bmatrix} \rightarrow R_2 - 2R_1 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & -2 & 4 \\ 2 & 1 & 5 & -2 \end{bmatrix}$$
$$\rightarrow R_3 - 2R_1 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & -2 & 4 \\ 0 & -1 & 1 & -2 \end{bmatrix}$$
$$\rightarrow \frac{1}{2}R_2 \rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2 \end{bmatrix}$$
$$\rightarrow R_1 - R_2 \rightarrow \begin{bmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2 \end{bmatrix}$$
$$\rightarrow R_3 + R_2 \rightarrow \begin{bmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

From the reduced, we learned that there are two independent column vectors, the first two, and they would form a basis for the range of *A*.

$$Sp(A) = \left\{ x \in \mathbb{R}^3 : x = a_1 \begin{bmatrix} 1\\2\\2 \end{bmatrix} + a_2 \begin{bmatrix} 1\\4\\1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real number} \right.$$
$$\Rightarrow \left\{ \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\4\\1 \end{bmatrix} \right\} \text{ is a basis for the range of } A, \text{ and } rank(A) = 2 .$$

Since rank(A) + nullity(A) = n, we would know directly that nullity(A) = n - rank(A) = 4 - 2 = 2. This can also be derived by write out the kernel space of A.

$$\mathcal{N}(A) = \left\{ x \in \mathbb{R}^4 : x = a_1 \begin{bmatrix} -3\\1\\1\\0 \end{bmatrix} + a_2 \begin{bmatrix} 2\\-2\\0\\1 \end{bmatrix}, a_1 \text{ and } a_2 \text{ are any real numbers} \right\}$$
$$\Rightarrow \left\{ \begin{bmatrix} -3\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-2\\0\\1 \end{bmatrix} \right\} \text{ is a basis for the null space of } A, \text{ and } nullity(A) = 2.$$

- **Question 32:** Let U and V be subspaces of \mathbb{R}^n , and suppose that U is a subset of V. Prove that $\dim(U) \leq \dim(V)$. If $\dim(U) = \dim(V)$, prove that V is contained in U, and thus conclude that U = V.
- **Answer:** Let's say $\dim(V) = q$. Let's assume $\dim(U) > \dim(V)$, we would have $\dim(U) \ge q + 1$, since $\dim(V) = q$. It means the basis of U consist of a minimal of q + 1 vectors. We also know that U is a subset of V, so all vectors in U are also in V. According to Theorem 9-1, any set of p + 1 or more vectors in W is linearly dependent, where $\dim(W) = p$, the q + 1 vectors in V are, therefore, linearly depended since $\dim(V) = q$. This is a conflict because vectors in a basis are linearly independent by definition. Therefore our assumption was wrong. $\dim(U) \le \dim(V)$.

If $\dim(U) = \dim(V) = q$, then U, V have basis consisting q vectors. Considering q vectors that make up basis for U. According to Theorem 9-3, any set of p linearly independent vectors in W is a basis for W, these q vectors is also a basis for V. Therefore any vector in V can be expressed as a linearly combination of the basis vectors for U. This is saying that $V \subseteq U$. Since U is known to be a subset of V, we have U = V.

Question 40:Let A be an $(m \times m)$ nonsingular matrix, and let B be an $(m \times n)$ matrix. Prove that $\mathcal{N}(AB) = \mathcal{N}(B)$ and conclude that rank(AB) = rank(B).Answer:Assume vector $v \in \mathcal{N}(AB)$, it means $AB \cdot v = \theta$. We can multiply A^{-1} on both sides of this equation.

$$AB \cdot v = \theta$$

$$\Rightarrow A^{-1}AB \cdot v = A^{-1}\theta$$

$$\Rightarrow IB \cdot v = \theta$$

$$\Rightarrow B \cdot v = \theta$$

$$\Rightarrow v \in \mathcal{N}(B).$$

So we've shown that any vector in the null space of AB, $\mathcal{N}(AB)$, is also in the null space of B, $\mathcal{N}(B)$. We can prove the other way around using the same approach. Assume vector $u \in \mathcal{N}(B)$, it means $B \cdot u = \theta$. We can multiply A on both sides of this equation.

$$B \cdot u = \theta$$

$$\Rightarrow AB \cdot u = A\theta$$

$$\Rightarrow AB \cdot u = \theta$$

$$\Rightarrow u \in \mathcal{N}(AB)$$

Therefore we've proven any vector in $\mathcal{N}(AB)$ is also in $\mathcal{N}(B)$, and any vector in $\mathcal{N}(B)$ is also in $\mathcal{N}(AB)$. This is the same as saying $\mathcal{N}(AB) = \mathcal{N}(B)$. According to the Remark that if A is an $(m \times n)$ matrix, then n = rank(A) + nullity(A), we have the following. Note that both AB and B are $(m \times n)$ matrices.

$$\mathcal{N}(AB) = \mathcal{N}(B)$$

$$\Rightarrow nullity(AB) = nullity(B)$$

$$\Rightarrow n - rank(AB) = n - rank(B)$$

$$\Rightarrow rank(AB) = rank(B).$$