Student: Cheng Yu (Jade) Math 412 Exam #1 July 13, 2010

Exam #1

Question 1:	Solve $11x = 1 \mod 41$
-------------	-------------------------

Answer:	wer: We first compute the GCD of 11 and 41.								
				3	1	2	1	2	
		0	1	3	4	11	15	41	
		1	0	1	1	3	4	11	
So $gcd(11, 41) = 15 \times 11 - 4 \times 41 = 1$.									
		$11x = 1 \mod 41$ $\Rightarrow 15 \times 11x = 15 \times 1 \mod 41$ $\Rightarrow (4 \times 41 + 1)x = 15 \mod 41$							
			$\Rightarrow x = 15 \mod 41$.						

Question 2: Factor 102 into primes in $\mathbb{Z}[i]$.

Answer: Gaussian integers form a unique factorization domain. In other words, for any Gaussian integer, in the form of a + bi, where $a, b \in \mathbb{Z}$, there is a unique decomposition of product of Gaussian primes. Gaussian primes are Gaussian integers a + bi satisfying one of the following properties. If both a and b are nonzero then, a + bi is a Gaussian prime if and only if $a^2 + b^2$ is an ordinary prime. If a = 0, then a + bi is a Gaussian prime if and only if |b| is an ordinary prime and $|b| = 3 \mod 4$. If b = 0, then a + bi is a Gaussian prime if and only if |a| is an ordinary prime and $|a| = 3 \mod 4$.

$$102 = 2 \times 3 \times 17$$

= (1 + i) × (1 - i) × 3 × 17
= (1 + i) × (1 - i) × 3 × (4 + i) × (4 - i).

Question 3: Prove that if F is a field and $p(x) \in F[x]$, then x - a divides p(x) if and only if p(a) = 0.

Answer: We first prove that x - a divides $p(x) \in \mathbb{F}[x]$ derives p(a) = 0. x - a divides p(x) $\Rightarrow p(x) = (x - a) \cdot q(x)$, where $q(x) \in \mathbb{F}[x]$ $\Rightarrow p(a) = (a - a) \cdot q(a)$ $\Rightarrow p(a) = 0 \cdot q(a)$ $\Rightarrow p(a) = 0$.

> We now prove that p(a) = 0 derives x - a divides p(x). The Polynomial Division Algorithm states, let f(x) and g(x) be two nonzero polynomials in $\mathbb{F}[x]$, where \mathbb{F} is a field and g(x) is a nonconstant polynomial. Then there exist unique polynomials q(x); $r(x) \in \mathbb{F}[x]$ such that the following equation holds, where either deg $r(x) < \deg g(x)$ or r(x) is the zero polynomial.

$$f(x) = g(x)q(x) + r(x)$$

Our g(x) is x - a, f(x) is p(x). Since deg g(x) = 1, r(x) has to be a constant or zero polynomial. Therefore we have the following.

$$p(x) = (x - a)q(x) + r(x)$$
$$= (x - a)q(x) + c$$
$$p(a) = 0$$
$$\Rightarrow p(a) = (a - a)q(a) + c = 0$$
$$\Rightarrow c = 0$$
$$\Rightarrow p(x) = (x - a)q(x).$$

At this point, we've shown that if \mathbb{F} is a field and $p(x) \in \mathbb{F}[x]$, then x - a divides p(x) if and only if p(a) = 0.

Question 4: Using the previous problem, explain carefully how you would construct a field of order 125.

Answer: I would construct the following set and prove that it is a field, and it have an order of 125.

$$\mathbb{Z}/_{5\mathbb{Z}}(x]/_{(x^3+x+1)}$$

The set of all polynomials with coefficients in the field \mathbb{F} forms a commutative ring denoted as $\mathbb{F}[X]$. $\mathbb{Z}/5\mathbb{Z}$ forms a commutative ring, and since 5 is a prime number, $\mathbb{Z}/5\mathbb{Z}$ is also a field, with a multiplicative identity, 1. Therefore $(\mathbb{Z}/5\mathbb{Z})[x]$ forms a commutative ring.

As we've proved in the previous problem that $f(x) = x^3 + x + 1 = 0$ is a necessary and sufficient condition for f(x) divides $(\mathbb{Z}/5\mathbb{Z})[x]$. So $(\mathbb{Z}/5\mathbb{Z})[x]/(x^3 + x + 1)$ forms a quotient ring if and only if f(x) = 0. $f(x) = x^3 + x + 1$ is irreducible over $\mathbb{Z}/5\mathbb{Z}$. In other words, f(x) = 0 has no root in $\mathbb{Z}/5\mathbb{Z}$. We can verify this by plugging in all 5 elements of $\mathbb{Z}/5\mathbb{Z}$ in f(x): f(0) = 1, f(1) = 3, f(2) = 1, f(3) = 1 and f(4) = 4. So f(x) is a maximal ideal. The quotient ring $(\mathbb{Z}/5\mathbb{Z})[x]/(x^3 + x + 1)$ is, therefore, a field.

The elements in this field can be written as $a + bx + cx^2$, where $x^3 + x + 1 = 0$, and $a, b, c \in \mathbb{Z}/5\mathbb{Z}$. There are $5 \times 5 \times 5 = 125$ combinations of selecting a, b, and c, the order of field, $(\mathbb{Z}/5\mathbb{Z})[x]/(x^3 + x + 1)$, is therefore 125.

Question 5: Given ideals *I*, *J* in a commutative ring *R* with 1, define $IJ = \{xy : x \in I, y \in J\}$. Prove that *IJ* is an ideal with $IJ \subseteq I \cap J$.

Answer: We first prove that $IJ = \{xy : x \in I, y \in J\}$ is an ideal. For an arbitrary ring $(R, +, \cdot)$, let (R, +) be the underlying additive group. A subset I is called a two-sided ideal (or simply an ideal) of R if (I, +) is a subgroup of (R, +) and for all x in I and for all r in $R, x \cdot r$ and $r \cdot x$ are in I.

It is clear that (IJ, +) is a subgroup of (R, +). It is closed under addition; the addition operation is associative with the an identity 0_R ; the inverse of any element xy is -xy, where $-x \in I, y \in J$.

Let $r \in R$, $a_{ij} \in IJ$, $a_i \in I$, and $a_j \in J$, where $a_{ij} = a_i a_j$, $a_i r = ra_i = a'_i$, and $a_j r = ra_j = a'_j$. The last assumption is based on the fact that R is a commutative ring hence $a_i r = ra_i$ and $a_j r = ra_j$.

> $a_{ij}r = a_i a_j r$ Since *J* is an ideal, $a_j r = a'_j \in J$ $\Rightarrow a_{ij}r = a_i a'_j \in IJ$ $ra_{ij} = ra_i a_j$ Since *I* is an ideal, $ra_i = a'_i \in I$ $\Rightarrow ra_{ij} = a'_i a_j \in IJ$ Since *R* is commutative and $IJ \subseteq R$ $\Rightarrow a_{ij}r = ra_{ij}$ $\Rightarrow a_{ij}r = ra_{ij} \in IJ$.

Therefore, we've shown that *IJ* is an ideal in *R*. Now we need to show $IJ \subseteq I \cap J$.

Since *I* is an ideal in *R*, $a_i \in I$ and $a_j \in J \subseteq R$ $\Rightarrow a_i a_j = a_j a_i \in I$ Since *J* is an ideal in *R*, $a_j \in J$ and $a_i \in I \subseteq R$ $\Rightarrow a_i a_j = a_j a_i \in J$ $\Rightarrow a_{ij} = a_i a_j = a_j a_i \in I \cap J$ $\Rightarrow IJ \subseteq I \cap J$.

Any element $a_{ij} \in IJ$ is also an element in $I \cap J$, so $IJ \subseteq I \cap J$.

Question 6: Can the containment be proper in the preceding problem?

Answer: *IJ* is not a proper subset of $I \cap J$. The equivalent condition may satisfy. For example, let $1 \in I$ and $J = \{0\}$.

Since $1r = r1 = r \in I$ for all $r \in R$ $\Rightarrow I = R$, the unit ideal Since $0r = r0 = 0 \in J$ for all $r \in R$ $\Rightarrow J$ is an ideal, the trivial ideal $\Rightarrow IJ = \{xy : x \in I, y \in J\} = \{x0 : x \in I\} = \{0\}$ $\Rightarrow I \cap J = R \cap \{0\} = \{0\}$ $\Rightarrow IJ = I \cap J$.

But *IJ* and $I \cap J$ don't have to be equal. For example in the integer ring, \mathbb{Z} , $I = J = \langle 2 \rangle$.

 $I = J = \langle 2 \rangle$ $\Rightarrow I \cap J = I = J = \langle 2 \rangle$ $\Rightarrow IJ = \langle 4 \rangle$ $\Rightarrow IJ \neq I \cap J$ $\Rightarrow IJ \subset I \cap J.$