Student: Yu Cheng (Jade) Math 412 Homework #1 June 07, 2010

Homework #1

Problem 1: For each of the following groupoids, determine the following.

a. $G = \langle \mathbb{Z}_3, + \rangle$

Answer

 $\langle \mathbb{Z}_3, + \rangle$'s characteristic table is shown as below. It is <u>commutative</u>, since a + b = b + a for all $a \in G, b \in G$, and the table is symmetric across its diagonal. It is <u>associative</u>, since a + (b + c) = (a + b) + c for all $a \in G, b \in G$, and $c \in G$. There is an <u>identity element 0</u>, since a + 0 = 0 + a = a for all $a \in G$. There is <u>no zero element</u>, since there is no such element a that b + a = a + b = a for all $b \in G$. There is <u>one idempotent element 0</u>, since only 0 + 0 = 0. For equation ax = b, <u>there is a solution</u> for every pair of a, b, since every row/column contains all elements in the collection.

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

b. $G = \langle \mathbb{Z}_4, + \rangle$

Answer	$(\mathbb{Z}_4, +)$'s characteristic table is shown as below. It is <u>commutative</u> , since $a + b = b + a$ for all
	$a \in G, b \in G$, and the table is symmetric across its diagonal. It is <u>associative</u> , since $a + (b + c) =$
	$(a + b) + c$ for all $a \in G, b \in G$, and $c \in G$. There is <u>an identity element 0</u> , since $a + 0 = 0 + c$
	$a = a$ for all $a \in G$. There is <u>no zero element</u> , since there is no such element a that $b + a = a + a$
	$b = a$ for all $b \in G$. There is <u>one idempotent elements 0</u> , since only $0 + 0 = 0$. For equation
	ax = b, <u>there is a solution</u> for every pair of a, b, since every row/column contains all elements in
	the collection.
	+ 0 1 2 3

0	I	2	3
0	1	2	3
1	2	3	0
2	3	0	1
3	0	1	2
	0 0 1 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

c. $G = \langle \mathbb{Z}_3, \times \rangle$

Answer	(\mathbb{Z}_3,\times) 's characteristic table is shown as below. It is <u>commutative</u> , since $a \times b = b \times a$, where
	$a \in G, b \in G$, and the table is symmetric across its diagonal. It is <u>associative</u> , since $a \times (b \times c) =$
	$(a \times b) \times c$ for all $a \in G, b \in G$, and $c \in G$. There is <u>no identity element</u> , since no such element a
	that $a \times b = b \times a = b$ for all $b \in G$. There is <u>a zero element 0</u> , since $a \times 0 = 0 \times a = 0$ for all
	$a \in G$. There is <u>two idempotent elements 0 and 1</u> , since $0 \times 0 = 0$ and $1 \times 1 = 1$. For equation
	ax = b, <u>there isn't always a solution</u> for every pair of a, b, since $0x = 1, 0x = 2$ don't have any
	solutions.

×	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

d. $G = \langle \mathbb{Z}_4, \times \rangle$

Answer (\mathbb{Z}_4,\times) 's characteristic table is shown as below. It is <u>commutative</u>, since $a \times b = b \times a$, where $a \in G, b \in G$, and the table is symmetric across its diagonal. It is <u>associative</u>, since $a \times (b \times c) = (a \times b) \times c$, where $a \in G, b \in G$, and $c \in G$. There is <u>no identity element</u>, since $0 \times 1 \neq 1$, while $a \times 1 = 1 \times a = a$ for all $a \in G, a \neq 0$. There is <u>one zero element 0</u>, since $a \times 0 = 0 \times a = 0$ for all $a \in G$. There is <u>two idempotent elements 0 and 1</u>, since only $0 \times 0 = 0, 1 \times 1 = 1$. For equation ax = b, <u>there isn't always a solution</u> for every pair of a, b, since 0x = 1, 0x = 2 don't have any solutions.

×	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

e.

The set $G = \{0, 1, 2, 3, 4\}$ with the multiplication $x \circ y = x$.

Answer	The characteristic table for the given set is shown as below. It is <u>not commutative</u> , since $a \circ b \neq a$
	$b \circ a$ for all $a \in G, b \in G$, and the table is not symmetric across its diagonal. It is <u>associative</u> ,
	since $a \circ (b \circ c) = a = (a \circ b) \circ c$ for all $a \in G, b \in G$, and $c \in G$. There is <u>no identity element</u> ,
	since there is no such element a that $a \circ b = b \circ a = b$ for all $b \in G$. There is <u>no zero element</u> ,
	since there is no such element a that $a \circ b = b \circ a = a$ for all $b \in G$. They are all <u>idempotent</u>
	<u>elements</u> , since $a \circ a = a$ for all $a \in G$. For equation $ax = b$, <u>there isn't always a solution</u> for
	every pair of a, b. For example, $1 \circ x = 2$ doesn't have any solutions.

.

o	0	1	2	3	4
0	0	0	0	0	0
1	1	1	1	1	1
2	2	2	2	2	2
3	3	3	3	3	3
4	4	4	4	4	4

f. Set *G* is defined as the natural numbers \mathbb{N} with the operations $x \wedge y$ being the minimum of *x* and *y*.

Answer The characteristic table for the given set is shown as below. It is <u>commutative</u>, since $a \land b = b \land a = \min\{a, b\}$ for all $a \in G, b \in G$, and the table is symmetric across its diagonal. It is <u>associative</u>, since $a \land (b \land c) = \min\{a, b, c\} = (a \land b) \land c$ for all $a \in G, b \in G$, and $c \in G$. There is <u>an</u> <u>identity element, the largest element, l, in the set</u>, since $l \land b = b \land l = b$ for all $b \in G$. There is <u>a</u> <u>zero element 0</u>, $a \land 0 = 0 \land a = 0$ for all $a \in G$. They are <u>all idempotent elements</u>, since $a \land a = a$ for all $a \in G$. For equation ax = b, <u>there isn't always a solution</u> for every pair of a, b. For example, $1 \land x = 2$ doesn't have any solutions.

٨	0	1	2	3	
0	0	0	0	0	
1	0	1	1	1	
2	0	1	2	2	
3	0	1	2	3	
:	:	:	÷	:	

g. Jupiter

*	R	Р	S
R	R	Р	R
Р	Р	Р	S
S	R	S	S

Answer	It is <i>commutative</i> , since the characteristic table is symmetric across its diagonal indicating
	$a \star b = b \star a$ for all $a \in Jupiter, b \in Jupiter$, and. It is <u>not associative</u> . A counter example is
	$R(PS) = RS = R \neq (RP)S = PS = S$. There is <u>no identity element</u> , since no such element
	$a \in Jupiter$, that $a \star b = b \star a = b$ for all $b \in Jupiter$. There is <u>no zero element</u> , sine no such
	element $a \in Jupiter$, that $a \star b = b \star a = a$ for all $b \in Jupiter$. They are <u>all idempotent</u>
	<u>elements</u> , since $a \star a = a$ for all $a \in Jupiter$. For equation $ax = b$, <u>there isn't always a solution</u>
	for every pair of a, b. For example, $P \star x = R$ doesn't have any solutions.

h. Saturn

o	R	Р	S
R	S	Р	R
Р	Р	R	S
S	R	S	Р

Answer It is <u>commutative</u>, since the characteristic table is symmetric across its diagonal indicating $a \circ b = b \circ a$ for all $a \in Saturn, b \in Saturn$, and. It is <u>not associative</u>. A counter example is $R(PS) = RS = R \neq (RP)S = PS = S$. There is <u>no identity element</u>, since no such element $a \in Saturn$, that $a \circ b = b \circ a = b$ for all $b \in Saturn$. There is <u>no zero element</u>, sine no such element $a \in Saturn$, that $a \circ b = b \circ a = a$ for all $b \in Saturn$. They are <u>no idempotent element</u>, since no such element that $a \circ a = a$ where $a \in Saturn$. For equation ax = b, <u>there is a solution</u> for every pair of a, b, since every row/column contain all elements.

i. Uranus

٥	R	Р	S	Т
R	Т	Р	R	Т
Р	Р	Т	S	Т
S	R	S	Т	Т
Т	Т	Т	Т	Т

Answer It is <u>commutative</u>, since the table is symmetric across its diagonal indicating $a \diamond b = b \diamond a$ for all $a \in Uranus, b \in Uranus$, and. It is <u>not associative</u>. A counter example is $R(PS) = RS = R \neq (RP)S = PS = S$. There is <u>no identity element</u>, since no such element $a \in Uranus$, that $a \diamond b = b \diamond a = b$ for all $b \in Uranus$. There is <u>a zero element T</u>, since $T \diamond b = b \diamond T = T$ for all $b \in Uranus$. They is <u>one idempotent element T</u>, since $T \diamond T = T$. For equation ax = b, <u>there is not always a solution</u> for every pair of a, b, for example, $S \diamond x = P$ doesn't have any solutions.

j. Neptune

•	R	Р	S	Т
R	Т	Р	R	R
Р	Р	Т	S	Р
S	R	S	Т	S
Т	R	Р	S	Т

Answer	It is <i>commutative</i> , since the characteristic table is symmetric across its diagonal indicating
	$a \cdot b = b \cdot a$ for all $a \in Neptune, b \in Neptune$, and. It is <u>not associative</u> . A counter example is
	$R(PS) = RS = R \neq (RP)S = PS = S$. There is an <u>identity element T</u> , since $T \bullet b = b \bullet T = b$ for
	all $b \in Neptune$. There is <u>no zero element</u> , since there is no such element a that $a \cdot b = b \cdot a =$
	a for all $b \in Neptune$. They is <u>one idempotent element T</u> , since $T \bullet T = T$. For equation $ax = b$,
	<u>there is not always a solution</u> for every pair of a, b , for example, $R \bullet x = S$.