Student: Yu Cheng (Jade) Math 412 Homework #3 (partial) July 05, 2010

Homework #3 (partial)

Question: Find the lattice of ideals of the ring \mathbb{Z}_{13}

Answer: For an arbitrary ring $(R, +, \cdot)$, let (R, +) be the underlying additive group. A subset l is called an *ideal* of R if (l, +) is a subgroup of (R, +) and for all $x \in l, r \in R, x \cdot r \in l, r \cdot x \in l$. The <u>sum</u> and *intersection* of ideals is again an ideal. With these two operations as join and meet, the set of all ideals of a given ring forms a complete modular lattice. The sum operation is defined as below, where l_a and l_b are two ideals.

$$a + b \coloneqq \{a + b \mid a \in l_a \text{ and } b \in l_b\}$$

The ring \mathbb{Z}_{13} has the following multiplication characteristic table, from which we can see that every <u>principle ideal</u> generated by a single element, except element 0, contains the whole set. Every row / column, except for 0 element, contains all 13 elements of \mathbb{Z}_{13} . This is due to the fact that 13 is a prime number.

•	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	1	3	5	7	9	11
3	0	3	6	9	12	2	5	8	11	1	4	7	10
4	0	4	8	12	3	7	11	2	6	10	1	5	9
5	0	5	10	2	7	12	4	9	1	6	11	3	8
6	0	6	12	5	11	4	10	3	9	2	8	1	7
7	0	7	1	8	2	9	3	10	4	11	5	12	6
8	0	8	3	11	6	1	9	4	12	7	2	10	5
9	0	9	5	1	10	6	2	11	7	3	12	8	4
10	0	10	7	4	1	11	8	5	2	12	9	6	3
11	0	11	9	7	5	3	1	12	10	8	6	4	2
12	0	12	11	10	9	8	7	6	5	4	3	2	1

Therefore, there are only two ideals in \mathbb{Z}_{13} , $\{0\}$ and \mathbb{Z}_{13} itself. The lattice of ideals, hence, contains two elements.

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} {0}

Question: Find the lattice of ideals of the ring \mathbb{Z}_{71}

Answer:Similarly, since 71 is a prime number, the lattice of ideal for ring \mathbb{Z}_{71} contains only two elements,
 $\{0\}$ and \mathbb{Z}_{71} itself.

```
{0, 1, 2, ..., 69, 70, 71}
```

Question: Find the lattice of ideals of the ring \mathbb{Z}_{22}

Answer: We will look for the principle ideals by evaluating each element in \mathbb{Z}_{22} .

Single element	Principle Ideal
Element 0:	{0}
Element 1:	$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}$
Element 2:	$\{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$
:	:
Element 11:	{0,11}
:	:
Element 20:	$\{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$
Element 21:	$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}$

There are four ideals in ring $\mathbb{Z}_{22}.\,$ The lattice of the ideals for \mathbb{Z}_{22} contains four elements.

Question: Find the lattice of ideals of the ring \mathbb{Z}_{44}

Answer: We will look for the principle ideals by evaluating each element in \mathbb{Z}_{44} .

Single element	Principle Ideal
Element 0:	{0}
All odd elements except multiples of 11:	{0, 1, 2,, 41, 42, 43}
All even elements except multiples of 4 or 11:	{0, 2, 4,, 38, 40, 42}
All multiples of 4:	{0, 4, 8,, 32, 36, 40}
Element 11 and 33:	{0, 11, 22, 33}
Element 22:	{0,22}

There are 7 ideals in ring $\mathbb{Z}_{22}.$ The lattice of the ideals for \mathbb{Z}_{22} contains seven elements.

Question:	Find the lattic	e of ideals	of the ring \mathbb{Z}_{70}
-----------	-----------------	-------------	-------------------------------

There are 8 ideals in ring $\mathbb{Z}_{22}.$ The lattice of the ideals for \mathbb{Z}_{22} contains eight elements.

Question:	Find the lattice of ideals of the rings \mathbb{Z}_{140}
-----------	--

Answer: We will look for the principle ideals by evaluating each element in \mathbb{Z}_{140} .

Single element	Principle Ideal
Element 0:	{0}
All odd elements except multiples of 5 or 7:	{0, 1, 2,, 137, 138, 139}
All even elements except multiples of 4, 5 or 7:	{0, 2, 4,, 134, 136, 138}
All multiples of 4 but not 5 or 7:	{0, 4, 8,, 128, 132, 136}
All multiples of 5 but not 2 or 7:	{0, 5, 10,, 125, 130, 135}
All multiples of 7 but not 2 or 5:	{0, 7, 14,, 119, 126, 133}
All multiples of 10 but not 4 or 7:	{0, 10, 20,, 110, 120, 130}
All multiples of 14 but not 4:	{0, 14, 28,, 98, 112, 126}
All multiples of 20:	{0, 20, 40, 60, 80, 100, 120}
All multiples of 28:	{0, 28, 56, 84, 112}
All multiples of 35 but not 70:	{0, 35, 70, 105}
All multiples of 70:	{0,70}

There are 12 ideals in ring $\mathbb{Z}_{22}.$ The lattice of the ideals for \mathbb{Z}_{22} contains twelve elements.

