Student: Yu Cheng (Jade) Math 412 Homework #3 (Textbook) July 30, 2010

Homework #3 (Textbook)

Exercise 4: If *A* and *B* are ideals of *R*, prove $A \cap B$ is an ideal of *R*.

Answer: For an arbitrary ring $(R, +, \cdot)$, let (R, +) be the underlying additive group. A subset *I* is called an ideal of *R* if (I, +) is a subgroup of (R, +) and for all $x \in I$ and for all $r \in R$, $r \cdot x = x \cdot r \in I$.

It is clear that $A \cap B$ is a subgroup of (R, +). It is closed under addition.

 $a, b \in A \cap B$ $\Rightarrow a, b \in A, \text{ and } a, b \in B$ $\Rightarrow a + b \in A \text{ and } a + b \in B$ $\Rightarrow a + b \in A \cap B.$

The addition operation is associative, since $A \cap B$ is a subset of R. The additive identity is 0_R , since $0_R \in A$, and $0_R \in B$. The inverses of element x in $A \cap B$ is -x, since $x, -x \in A$, $x, -x \in B$.

Now we need to show $r \cdot x = x \cdot r \in A \cap B$ for all $r \in R$ and $x \in A \cap B$.

 $x \in A \cap B$ $\Rightarrow x \in A \text{ and } x \in B$ A, B are ideals of R $\Rightarrow r \cdot x = x \cdot r \in A \text{ and } r \cdot x = x \cdot r \in B$ $\Rightarrow r \cdot x = x \cdot r \in A \cap B.$

At this point, we've shown that $(A \cap B, +)$ is a subgroup of (R, +) and for all $x \in A \cap B$ and $r \in R, r \cdot x = x \cdot r \in A \cap B$. $A \cap B$ is, therefore, an ideal of ring R.

Exercise 5: If *A* and *B* are ideals of *R*, prove their sum, defined by

$$A + B = \{a + b : a \in A, b \in B\},\$$

is an ideal of R and is the smallest ideal that contains both A and B.

Answer: We will first show that A + B is an <u>ideal</u> of R. A + B is closed under addition. Let's have $c_1, c_2 \in A + B$, and $c_1 = a_1 + b_1, c_2 = a_2 + b_2$, where $a_1, a_2 \in A$ and $b_1, b_2 \in B$.

 $a_1, a_2 \in A \text{ and } b_1, b_2 \in B$ $c_1 = a_1 + b_1 \text{ and } c_2 = a_2 + b_2$ $\Rightarrow c_1 + c_2 = a_1 + b_1 + a_2 + b_2 = (a_1 + a_2) + (b_1 + b_2) \in A + B$.

The addition operation is associative, since A + B is a subset of R. The additive identity is 0_R , since $0_R \in A$, $0_R \in B$, $0_R = 0_R + 0_R \in A + B$. The inverse of a + b in A + B where $a \in A$, $b \in B$, is -a - b, since $-a \in A$, $-b \in B$.

Now we need to show $r \cdot x = x \cdot r \in A + B$ for all $r \in R$ and $x \in A + B$.

$$x \in A + B$$

$$\Rightarrow x = a + b, \text{ where } a \in A, b \in B$$

$$\Rightarrow r \cdot x = r \cdot (a + b) = r \cdot a + r \cdot b$$

$$\Rightarrow x \cdot r = (a + b) \cdot r = a \cdot r + b \cdot r$$

$$r \cdot a = a \cdot r \in A \text{ and } r \cdot b = b \cdot r \in B$$

$$\Rightarrow r \cdot x = x \cdot r \in A + B.$$

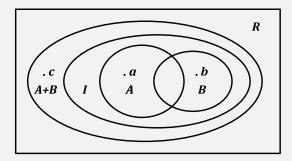
At this point, we've shown that (A + B, +) is a subgroup of (R, +) and for all $x \in A + B$ and $r \in R, r \cdot x = x \cdot r \in A + B$. A + B is, therefore, an ideal of ring R.

Now we will show $A \subseteq A + B$ and $B \subseteq A + B$. Without losing generosity, we need only to prove one. We will show A is *contained* in A + B. Let's have $a \in A$.

$$a \in A, 0_R \in B$$

 $\Rightarrow a = a + 0_R \in A + B.$

We've shown any element in A is also an element in A + B. A is, therefore, contained in A + B. We also need to show A + B is the <u>smallest</u> ideal that contains both A and B. Let assume there is another ideal, I, that's smaller than A + B, $I \subset A + B$, and contains A and B, $A, B \subseteq I$. We now pick an element, c, from A + B, but not contained in I. $c = a + b \in A + B$, $c \notin I$.



Now we have a contradictory.

$$a \in A, b \in B$$

 $\Rightarrow a, b \in I$
 $\Rightarrow c = a + b \in I$.

The assumption, $c \notin I$, is therefore not true. There is no such element, c, that $c \in A + B$, but $c \notin I$. The set I is therefore the same as A + B. A + B is therefore the smallest ideal that contains both A and B.

Exercise 11: Let *R* be a commutative ring with identity and $x \in R$. Give a complete proof that the set (x) defined by $(x) = \{rx : r \in R\}$ is an ideal of *R*.

Answer: We will first show that (x) is a subgroup of (R, +). (x) is closed under addition. Let's have $c_1, c_2 \in (x)$, and $c_1 = r_1 x, c_2 = r_2 x$, where $r_1, r_2 \in R$.

$$c_1 = r_1 x \text{ and } c_2 = r_2 x$$

 $\Rightarrow c_1 + c_2 = r_1 x + r_2 x = (r_1 + r_2) x \text{ since } r_1, r_2, x \in R$
 $\Rightarrow c_1 + c_2 = (r_1 + r_2) x \in (x)$.

The addition operation is associative, since (x) is a subset of R. The additive identity is 0_R , since $0_R \in R$, $0_R x = 0_R \in (x)$. The inverse of rx in (x) is (-r)x = -rx.

Now we need to show $r \cdot c = c \cdot r \in (x)$ for all $r \in R$ and $c \in (x)$, where $c = r'x, r' \in R$.

R is commutative

$$\Rightarrow r \cdot c = c \cdot r$$

$$c = r'x \in (x)$$

$$\Rightarrow r \cdot c = c \cdot r = r \cdot r' \cdot x = (r \cdot r') \cdot x \in (x)$$

	At this point, we've shown that $((x), +)$ is a subgroup of $(R, +)$ and for all $c \in (x)$ and $r \in R$, $r \cdot c = c \cdot r \in (x)$. (x) is, therefore, an ideal of ring R.
Exercise 12:	Let R be a commutative ring with identity such that the only ideals of R are the two trivial ideals (0) and R . Prove that every nonzero element $x \in R$ has a multiplicative inverse.
Answer:	<i>R</i> has only the two trivial ideals. In other words, a principle ideal generated by any nonzero element, <i>a</i> , contains all elements in <i>R</i> including the multiplicative identity, 1_R . In order to generate 1_R , there must exist an element <i>b</i> , such that $a \cdot b = b \cdot a = 1_R$. Hence, we've shown that for any element, <i>a</i> , in <i>R</i> , it has a multiplicative inverse, <i>b</i> .