Student: Yu Cheng (Jade) Math 412 Homework #4 July 30, 2010

Homework #4—Page 166

Exercise 4:	Prove that $(ab)^2 = a^2b^2$ for all choices of a, b in group G if and only if G is Abelian.
Answer:	We will first show $(ab)^2 = a^2b^2$ for any $a, b \in G$ derives that G is an Abelian group, the <u>if</u> half. abab = aabb $\Rightarrow a^{-1}ababb^{-1} = a^{-1}aabbb^{-1}$ $\Rightarrow ba = ab$. If $(ab)^2 = a^2b^2$ for any $a, b \in G$, it follows that G is an Abelian group. Now we need to show the <u>only if</u> half. If G is Abelian group, we can just reverse the procedure above and derive $(ab)^2 = a^2b^2$. Therefore, $(ab)^2 = a^2b^2$ is a sufficient and necessary condition for G being an Abelian group.
Exercise 7:	Let <i>a</i> be a fixed element of a group <i>G</i> . Prove that the set $C_G(a) = \{x \in G : ax = xa\}$ is a subgroup of <i>G</i> . $C_G(a)$ is called the <i>centralizer</i> of <i>a</i> in <i>G</i> .
Answer:	First, we will show that $C_G(a)$ is closed under group G operation, \cdot . $x_1 \in C_G(a)$, and $x_2 \in C_G(a)$ $\Rightarrow a \cdot x_1 = x_1 \cdot a$, and $a \cdot x_2 = x_2 \cdot a$ $\Rightarrow (x_1 \cdot x_2) \cdot a = x_1 \cdot x_2 \cdot a = x_1 \cdot a \cdot x_2 = a \cdot x_1 \cdot x_2 = a \cdot (x_1 \cdot x_2)$ $\Rightarrow x_1 \cdot x_2 \in C_G(a)$. The group operation, \cdot , is associative, since $C_G(a)$ is a subset of G . The identity, $e \in C_G(a)$. $a \cdot e = e \cdot a = a$

$$\Rightarrow e \in C_G(a)$$
.

The inverse of $x \in C_G(a)$ is x^{-1} , the same as its inverse in G.

$$ax = xa$$

$$\Rightarrow x^{-1}axx^{-1} = x^{-1}xax^{-1}$$

$$\Rightarrow x^{-1}a = ax^{-1}$$

$$\Rightarrow x^{-1} \in C_G(a).$$

At this point we've shown that $C_G(a)$ satisfies all conditions for a group, and $C_G(a)$ is a subset of G. $C_G(a)$ is, therefore, a subgroup of G.

Exercise 8: For any group G the set $Z(G) = \{b \in G : bc = cb \text{ for all } c \in G\}$ is called the center of G. Prove Z(G) is a subgroup of G. Show also that Z(G) = G if and only if G is Abelian.

Answer: We will first show that Z(G) is a <u>subgroup</u> of G. Z(G) is closed under group G operation, \therefore $x_1 \in Z(G)$, and $x_2 \in Z(G)$ $\Rightarrow a_1 \cdot x_1 = x_1 \cdot a_1$, and $a_2 \cdot x_2 = x_2 \cdot a_2$, where $a_1, a_2, x_1, x_2 \in G$ $\Rightarrow a_1 \cdot x_1 \cdot a_2 \cdot x_2 = x_1 \cdot a_1 \cdot x_2 \cdot a_2$ $\Rightarrow a_1 \cdot a_2 \cdot x_1 \cdot x_2 = x_1 \cdot x_2 \cdot a_1 \cdot a_2$ $\Rightarrow (a_1 \cdot a_2) \cdot (x_1 \cdot x_2) = (x_1 \cdot x_2) \cdot (a_1 \cdot a_2)$ $\Rightarrow x_1 \cdot x_2 \in Z(G)$.

> The group operation, \cdot , is associative, since Z(G) is a subset of G. The identity, $e \in C_G(a)$. $a \cdot e = e \cdot a = a$ for all $a \in G$

> > $\Rightarrow e \in Z(G) \, .$

The inverse of $x \in Z(G)$ is x^{-1} , the same as its inverse in G.

$$ax = xa \text{ for all } a \in G$$

$$\Rightarrow x^{-1}axx^{-1} = x^{-1}xax^{-1}$$

$$\Rightarrow x^{-1}a = ax^{-1} \text{ for all } a \in G$$

$$\Rightarrow x^{-1} \in Z(G) .$$

At this point we've shown that Z(G) satisfies all conditions for a group, and Z(G) is a subset of G. Z(G) is, therefore, a subgroup of G. Now we will show that Z(G) = G is the sufficient and necessary condition for G being an <u>Abelian</u> group. Z(G) = G means for all pairs of $a, b \in G$, bc = cb holds. This is precisely the definition of Abelian group. If G is an Abelian group, bc = cb holds for all $a, b \in G$, which indicates Z(G) = G.

Homework #4—Page 194

- **Exercise 10:** Let *H* be a subgroup of a group *G*. Show that there is a well-defined correspondence β from the set of left cosets of *H* to the set of right cosets of *H* that satisfies $\beta(aH) = Ha^{-1}$. Use this to show that the number of left cosets of *H* in *G* is the same as the number of right cosets of *H* in *G*.
- **Answer:** We will first show that β , defined as $\beta(aH) = Ha^{-1}$, is well-defined. Namely, we want to show that β is a <u>map</u> from the left cosets to the right cosets, and $\beta(aH) = Ha^{-1}$ holds no matter what element a we choose from G. Let's have $(aH) = Ha^{-1}$, $(bH) = Hb^{-1}$, and let's assume $Ha^{-1} = Hb^{-1}$.

$$Ha^{-1} = Hb^{-1}$$

$$\Rightarrow Ha^{-1}b = Hb^{-1}h^{-1}b^{-1}h^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}b^{-1}a^{-1}b^{-1}$$

We've shown that β is well-defined. There is no ambiguous. The relation holds regardless of what *a* wee choose. β is also <u>onto</u>. For any given Ha^{-1} , aH always exists. So $\beta(aH) = Ha^{-1}$ is a one-to-one and onto map from the left cosets of *H* in *G* to the right cosets of *H* in *G*. Hence, the number of left cosets of *H* in *G* is the same as the number of right cosets of *H* in *G*.

Let *a* be an element of the group *G* and let $\phi : G \to G$ be the function defined by $\phi(g) = aga^{-1}$. **Exercise 1**: Prove that ϕ is an isomorphism of *G* with itself. **Answer:** A one-to-one correspondence $\phi: G_1 \to G_2$ between two groups G_1 and G_2 is called a group isomorphism if $\phi(g_1g_2) = \phi(g_1)\phi(g_2)$ holds for all $g_1, g_2 \in G_1$. It is clear that ϕ , defined as $\phi(g) = aga^{-1}$, is a one-to-one map from G to itself. Let's have $g_1, g_2 \in G$, and assume $ag_1a^{-1} = ag_2a^{-1}$. $ag_1a^{-1} = ag_2a^{-1}$ $\Rightarrow a^{-1}ag_1a^{-1}a = a^{-1}ag_2a^{-1}a$ $\Rightarrow g_1 = g_2$. Now we will show that $\phi(g_1g_2) = \phi(g_1)\phi(g_2)$ holds for all $g_1, g_2 \in G$. $\phi(g_1)\phi(g_2) = ag_1a^{-1}ag_2a^{-1}$ $= ag_1g_2a^{-1}$ $=\phi(g_1g_2)$. At this point we've shown that $\phi: G \to G$ is an isomorphism. It can be considered as simply renaming the elements of G, since it's an one-to-one and onto function. **Exercise 3**: If G is a group, prove that the set $Z(G) = \{a : a \in G \text{ and } ax = xa \text{ for every } x \in G\}$ is a normal subgroup of G. [Z(G) is called the *center* of G.] Answer: To show that Z(G) is a normal subgroup of G, we need to first show that Z(G) is a subgroup of G, which we've already done in Exercise 8 of page 166. Then we need to show that it is closed under conjugation over G, $gag^{-1} \in Z(G)$, for any $g \in G$, and $a \in Z(G)$. $a \in Z(G) \Rightarrow ga = ag$ for all $g \in G$ \Rightarrow $gag^{-1} = agg^{-1} = a$ \Rightarrow gag⁻¹ \in Z(G). Therefore Z(G) is a normal subgroup of G.

Exercise 11: Let G be any group and H a subgroup that contains every element $aba^{-1}b^{-1}$ with $a, b \in G$. Prove that H is a normal subgroup of G and G/H is Abelian.

Answer: We will first show that *H* is a normal subgroup of *G*. Let $g \in G$, $x \in H$, and $x = aba^{-1}b^{-1}$.

$$gxg^{-1} = g \cdot aba^{-1}b^{-1} \cdot g^{-1}$$

= $ga \cdot (g^{-1}g) \cdot b \cdot (g^{-1}g) \cdot a^{-1} \cdot (g^{-1}g) \cdot b^{-1}g^{-1}$
= $(gag^{-1}) \cdot (gbg^{-1}) \cdot (ga^{-1}g^{-1}) \cdot (gb^{-1}g^{-1})$
= $(gag^{-1}) \cdot (gbg^{-1}) \cdot (gag^{-1})^{-1} \cdot (gbg^{-1})^{-1}$
 $\Rightarrow gxg^{-1} \in H$.

We've shown $gxg^{-1} \in H$ holds for any $g \in G$ and $x \in H$. *H* is therefore a normal subgroup of *G*. Now we need to show that G/H is Abelian. Let $aH, bH \in G/H$. Since $a, b \in G$, $aba^{-1}b^{-1} \in H$, so does $bab^{-1}a^{-1} \in H$.

$$aba^{-1}b^{-1} \in H$$

$$\Rightarrow aba^{-1}b^{-1}H = H$$

$$\Rightarrow (aH)(bH)(a^{-1}H)(b^{-1}H) = H$$

$$bab^{-1}a^{-1} \in H$$

$$\Rightarrow bab^{-1}a^{-1}H = H$$

$$\Rightarrow (bH)(aH)(b^{-1}H)(a^{-1}H) = H$$

$$\Rightarrow (aH)(bH)(a^{-1}H)(b^{-1}H) = (bH)(aH)(b^{-1}H)(a^{-1}H)$$

$$\Rightarrow (aH)(bH)(a^{-1}H)(b^{-1}H)(bH)(aH) = (bH)(aH)(b^{-1}H)(a^{-1}H)(bH)(aH)$$

$$\Rightarrow (aH)(bH) = (bH)(aH)(b^{-1}H)(a^{-1}H)(bH)(aH)$$

$$\Rightarrow (aH)(bH) = (bH)(aH)(b^{-1}a^{-1}ba)H$$

$$\Rightarrow (aH)(bH) = (bH)(aH).$$

We've shown (aH)(bH) = (bH)(aH) holds for any $a, b \in G, G/H$ is therefore Abelian.