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Exercise 3: Show that there is no simple group of order 112 = 2*- 7.

Answer: We will prove the given statement by contradiction. According to the Sylow Theorem, the

number of Sylow p subgroups is congruent to 1 mod p.
n,=135,7,9,

n, =1,8,15,22,

According to the Sylow Theorem, if |G| = p*m, the number of Sylow p subgroups divides m.
n,|7=n,=10rn, =7
n, |16 > n, =1,orn, = 8.

Assume n, = 7 andlet H € Sly,(G). We have |H| = 16, [G: H] = 7. Let G act on the left cosets

of H, there is a group homomorphism from G to S;. It is defined as ¢: G - S;, g — 4,4, where

Ag(xH) = gxH for all x € G. We can prove the group homomorphism as below:
#(91) - 9(g2)(xH) = Ay, ° Ag,(xH)
= Ag,(g2xH)
= 0192xH
= Ag,g,(xH)

= ¢(g192)(xH)

= ¢(g1) - $(g2) = $(9192) -

The previous exercise has derived the conclusion that for a simple group G with order greater
than 2 and has a group homomorphism ¢:G — S, then image of ¢ satisfies ¢(G) < Ay.

Therefore, we have

Img(¢) < 4;.



Exercise 4:

Answer:

Since G is assumed to be simple, Ker (¢) is trivial, so Img(¢) = G. Hence we have:
7!
G<A,=>|G|| >

7!
=112 | =.
I2

This is a conflict. 112 does not divide 7!/2. Hencen, # 7,n, = 1. Since we know that if
n, = 1, then P is the only Sylow p subgroup of G, and P < G. Therefore, we've found a proper

normal subgroup of G, namely, the Sylow 2 subgroup. We conclude, there is not simple group

with order 112.

Show that if G/Z(G) is cyclic, then G is abelian. Use this to show that a group of order p?, p is a

prime, G is abelian.

All cyclic groups are abelian, so if G/Z(G) is cyclic, then G/Z(G) is an abelian group. And since
Z(G) < G,foralla, b € G, abZ(G) equals (aZ(G))(bZ(G)).

(az(®))(bZ2(6)) = (b2(6))(aZ(6))
= abZ(G) = baZ(G)
= ab =ba.
Hence we've shown if G/Z(G) is cyclic, then G is abelian. Now we will prove if |G| = p? where p

is a prime, then G is abelian. Since Z(G) < G, we have |Z(G)| | |G|, hence, |Z(G)| can be either
1,p or p2.

Case #1: If |Z(G)| = p? = |G|, then G = Z(G). By definition Z(G) is abelian, so G is abelian.

Case #2: If |Z(G)| = p, then |G/Z(G)| = p?/p = p. Lagrange’s Theorem tells us that a group
with prime order is cyclic. So G/Z(G) is a cyclic group. We've also shown if G/Z(G)

is cyclic, then G is abelian. Hence G is abelian.

Case #3: we will show that |Z(G)| = 1 is not possible. Recall the class equation, where C(y;)
is the centralizer for y; € G, y; € Z(G), and y; is a SDR for its conjugacy class.

161 =121 + ) [6:CDI.

The order of conjugacy class of G need to divide the order of G, hence every
[G: C(y;)] divides |G|]. In other words, p divides [G: C(y;)]. So p divides |G|, and p
divides Y};[G: C(y;)], in order for the class equation to hold, p has to divide |Z(G)| as
well. Therefore |Z(G)| # 1.
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Answer:

Exercise 6:

Answer:

In summary, we've shown that a group of order p?, where p is a prime, is an abelian group.

Show that a group of order pq cannot be simple, where both p and q are primes.

If p=q, |G| = p?, then as we've shown in the previous exercise that G is an abelian group.
According to Sylow I theorem, if p* | |G| then IH < G where |H| = p*, so there exist a subgroup
K < G and |K| = p. Any subgroup of an abelian group is normal. Hence we’ve found a proper

normal subgroup K < G. G is not a simple.

If p # q, we will prove the given statement by contradiction. According to the Sylow Theorem,

the number of Sylow p subgroups is congruent to 1 mod p.
n,=1L,p+12p+1,-

ng = 1,q+1,2qg+1,--.

According to the Sylow Theorem, if |G| = p*m, the number of Sylow p subgroups divides m.

n,|gandng |p.

Without loss of generosity, we assume p < q. With this assumption, there is only possible value
for the number of Sylow g subgroups, n; = 1. Since we know that if n, = 1, then Q is the only
Sylow q subgroup of G, and Q < G. Therefore, we've found a proper normal subgroup of G,
namely, the Sylow q subgroup. Therefore, a group with order pq, where p, q are primes, cannot

be a simple group.

Let P be a Sylow p subgroup of a finite group G. Show that N(N(P)) = N(P).

First we will show that P char N(P). According to the properties of the characteristic subgroups,
if there is only one subgroup of G with a certain cardinality, then this subgroup is a characteristic
subgroup of G. This is due to the fact that group automorphisms preserve the subgroup
structures. As the only subgroup with a certain cardinality, its elements would be sent back to

this subgroup after applying any group automorphism on G.

We assume that there is another subgroup Q < N(P) and |P| = |Q| = p¥, where p* || |G]. We
have the following group structures in N (P):



G

By definition, P < N(P), and now Q < N(P), we could apply the second isomorphism theorem,

and obtain the following conclusions:
PQ <G
P < PQ
PNnQ<Q

PQ/P=Q/(PNQ) .

Based on these conclusions, we derive the following equations, where p* Il |G| and r < K,
P < PQ = |PQ| = mP*
PNQ<Q=I|PNnQ|=p"

_ Pl _ 1ol
PQ/P=Q/(PNQ)=> Pl Pnal’

Plugging the values into the last equation, we can derive that m is a power of p.

mpk pk
i =p—r=>m=pk‘r>p.
b p

This is a conflict. If mis a power of p, it means we have a subgroup, PQ < G, where |PQ| =
pktlogn™ > pk - But p* || |G|, k is the largest power of p such that p* divides the order of G.
Therefore, the assumption, there exist another group Q < N(P) and |Q| = |P|, is not true. P is
the only subgroup in N (P) with the cardinality p*. Therefore, we’ve shown P char N(P).

We know thatif A char B < C then A < C.
P char N(P) < N(N(P))

=P < N(N(P)).



At the same time, we also know that N(P) is the largest subgroup of G containing P as a normal
subgroup. In other words, N (N (P)) can’t be any larger than N(P). Therefore, we’ve shown that
N(P) = N(N(P)).



