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Exercises in BAI 2.2

Question #1: R is a ring with 1. Show that if 1− ab is a unit, then 1− ba is also a unit.

Answer: Since 1 − ab is a unit, there exist x ∈ R, such that (1 − ab) · x = x · (1 − ab) = 1. We can

show that 1 − ba is a unit by proving (1 + bxa) is its inverse. First, (1 + bxa) ∈ R becuase

R is closed under addition and multiplication.

(1− ba) · (1 + bxa) = 1 + bxa− ba− babxa

= 1− ba+ b(1− ab)xa

= 1− ba+ b[(1− ab)x]a

= 1− ba+ ba

= 1.

(1 + bxa) · (1− ba) = 1− ba+ bxa− bxaba

= 1− ba+ bx(1− ab)a

= 1− ba+ b[x(1− ab)]a

= 1− ba+ ba

= 1.

In summary, we’ve shown that (1−ba)·(1+bxa) = (1+bxa)·(1−ba) = 1, where 1+bxa ∈ R.

1− ba is therefore a unit in R.

Question #4: Show that a finite domain is a skew field.

Answer: Let’s call this finite domain F . By the definition of integral domain, if a, b ∈ F and ab = 0

then either a = 0 or b = 0. The goal for this question is to show that ∀x ∈ F , it has an

verse. In other words, ∃y ∈ F , such that xy = 1.

Let’s define a map, ϕ : F → F , as ϕ(a) = ab, where a, b ∈ F , and b 6= 0 is an arbitrarily

chosen fixed element. We can show that this map is a one-to-one map. Assume ϕ(x) =

ϕ(y), then we have:
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xb = yb

⇒ xb− yb = 0

⇒ (x− y)b = 0

⇒ x− y = 0 or b = 0

⇒ x− y = 0

⇒ x = y.

According to the Pigeonhole Principle, any one-to-one map from a set onto another set

with the same finite cardinality, is also an onto map. So ϕ is also an onto map from F

to F . In other words, for any y ∈ F , there exists some x ∈ F such that xb = y. Further,

if y = 1, then we are saying for a fixed element b, there always exists xb = 1. So, we’ve

found a inverse for b. Since b is arbitrarily chosen, we have ∀b ∈ F, b 6= 0,∃x ∈ F , such

that xb = 1.

In summary, we’ve shown that ∀a ∈ F , a has an inverse, therefore F is a skew field. If F is

commutative, then it forms a field.

Exercises in DF 7.4

Question #37: A commutative ring R is called a local ring if it has a unique maximal ideal.

a. Prove that if R is a local ring with the maximmal ideal M , then every element from R−M

is a unit.

Answer: We will prove this by controdiction. Let’s take an element x ∈ R −M , and assume that

x is a nonunit. Let’s consider the principle ideal generated by x, (x). By Zorn’s Lamma,

if (x) is an ideal of R, it has to lay inside of some maximal ideal. Since there is only one

maximal ideal, we learn that (x) ⊆ M . Therefore, x ∈ M . This is a controdiction of

the assumption that x ∈ R −M . So, the assumption doesn’t hold. In other words, if an

element x ∈ R−M , then it is a unit.

b. Prove conversely that if R is a commutative ring with 1 in which the set of nonunits forms

an ideal M , then R is a local ring with unique maximal ideal M .
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Answer: We will first show that M is maximal. This is easy. If there is an ideal N , such that M ⊂ N ,

there exist some element x ∈ N −M . Since M contains all element that are nonunits in

R, x must be a unit. In other words N = R. So M is a maximal ideal

M ⊂ N

⇒ ∃x ∈ N, x /∈M

⇒ x is a unit

⇒ N = R.

We also need to show that M is the only maximal ideal. Let’s assume there exists another

maximal ideal O 6= M .

O is maximal, O 6= M

⇒ ∃y ∈ O, y /∈M

⇒ y is a unit

⇒ O = R.

So, M is the unique maximal ideal of R. R is a local ring with the maximal ideal M .

Question #38: Prove that the ring of all rational numbers whose denominators is odd is a local ring

whose unique maximal ideal is the princeple ideal generated by 2.

Answer: First we will show that the set R of all rational numbers whose denominators is odd form

a commutative ring. Let’s have x = a1/b1 ∈ R and y = a2/b2 ∈ R with odd denominators

b1, b2. R is closed under summation.

x+ y =
a1
b1

+
a2
b2

=
a1b2 + a2b1

b1b2
∵ b1, b2 are odd

∴ b1b2 is odd

⇒ x+ y ∈ R.

R is closed under multiplication.

xy =
a1
b1
× a2

b2
=

a1a2
b1b2

∵ b1, b2 are odd

∴ b1b2 is odd

⇒ xy ∈ R.
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Based on bacis algebra, it is clear that 〈R,+,−, 0〉 forms an abelian group. The addi-

tion operation,+, is commutative, associative, and there is an inverse for any element in

〈R,+,−, 0〉. Also, 〈R, ·, 1〉 forms a monoid. The multiplication operation,×, is associatvie

and it distributes over addition. Also the multiplication is commutative. In summary, R

forms a commutative ring.

Now let’s consider the princeple ideal generated by 2, (2). Any x ∈ R that can be written

in the form of x = 2a/b, where b is odd, belongs in (2). Hence, ∀x ∈ (2), x is a nonunit,

since b/2a /∈ R by definition. In other words, we have:

(2) = {x : x =
a

b
, where a is even, b is odd}

R− (2) = {x : x =
a

b
, where a, b are odd}.

Let’s assume there exists an element y ∈ R−(2), such that y is a nonunit. Since y ∈ R−(2),
y = a/b, where a, b are both odd.

y ∈ R− (2)⇒ y =
a

b
∵ a is odd

∴
b

a
∈ R

⇒ y · b
a
=

a

b
· b
a
= 1.

At this point, we’ve shown that R is a commutative ring with 1, for any ∀x ∈ (2), x is a

nonunit, and ∀y ∈ R−(2), y is a unit. Now, we can apply the conclusion we just proved in

the previous questin that if R is a commutative ring with 1 in which the set of all nonunits

forms an ideal M , then R is a local ring with unique maximal ideal M . Here M = (2) and

R, the set of all rational numbers whose denominators is odd, forms a local ring.
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