Student: Yu Cheng (Jade) Math 611 In-Class Exercise (Lecture Aug 26th) September 1, 2010

In-Class Exercise

Question: Let $(L, \vee, \wedge, \rangle$ be a lattice. Define $x \le y$ by $x \land y = x$.

- **a.** Show that \leq is a partial order.
- **Answer:** According to the definition of partial order relation. I need to show that \leq is reflexive, antisymmetric, and transitive. Since $(L, \vee, \wedge, \rangle$ is a lattice, the meet of an element with itself is itself. Hence \leq is <u>reflexive</u>.

 $x \wedge x = x$ $\Rightarrow x \le x \, .$

Assume $x \le y$ and $y \le x$ both hold. We can prove that this assumption is followed by x = y. Hence the relation \le is *antisymmetric*.

 $x \le y \Rightarrow x \land y = x$ $y \le x \Rightarrow y \land x = x \land y = y$ $\Rightarrow x = y.$

Assume $x \le y$ and $y \le z$ hold. We can derive that $x \le z$ holds. The relation \le is *transitive*.

$$x \le y \Rightarrow x \land y = x$$
$$y \le z \Rightarrow y \land z = y$$
$$\Rightarrow x \land z = (x \land y) \land z$$
$$= x \land (y \land z)$$
$$= x \land y$$
$$= x$$
$$\Rightarrow x < z.$$

In summary, if $(L, V, \Lambda,)$ is lattice, $x \le y$ is defined by $x \land y = x$, then \le is a partial order relation.

b. Show that $glb(x, y) = x \land y$ and $lud(x, y) = x \lor y$.

Answer: We'll first show $glb(x, y) = x \land y$. Let glb(x, y) = z. Since we've shown \leq is a partial order relation, according to the definition of the greatest lower bound, we have:

$$z \le x, z \le y$$

if $z' \leq x$ and $z' \leq y$ then $z' \leq z$.

Using the first condition, $z \le x$ and $z \le y$, we can derive $z \le x \land y$.

$$z \le x, z \le y$$

$$\Rightarrow x \land z = z, y \land z = z$$

$$\Rightarrow x \land z = x \land (y \land z)$$

$$= (x \land y) \land z$$

$$= z$$

$$\Rightarrow z \le x \land y.$$

Using the second condition, if $z' \le x$ and $z' \le y$ then $z' \le z$, we can derive that $x \land y \le z$.

$$x \wedge (x \wedge y) = (x \wedge x) \wedge y$$
$$= x \wedge y$$
$$\Rightarrow x \wedge y \le x$$
$$y \wedge (x \wedge y) = y \wedge (y \wedge x)$$
$$= (y \wedge y) \wedge x$$
$$= y \wedge x$$
$$= x \wedge y$$
$$\Rightarrow x \wedge y \le y$$
$$\Rightarrow x \wedge y \le z$$

At this point, we have $z \le x \land y$ and $x \land y \le z$. According to the *antisymmetric* rule of a partial order set, the two elements, z and $x \land y$ are the same. Hence $x \land y = z = glb(x, y)$.

Similarly we can show that $lup(x, y) = x \lor y$. But first we will prove that $a \land b = a$ if and only if $a \lor b = b$. We will prove with the *absorption* law on the lattice operations.

$$a \wedge b = a$$

 $\Rightarrow (a \wedge b) \lor b = b = a \lor b$

In other words, according to its definition, the partial order relation, \leq , has the following relations with the lattice operations, \land and \lor .

$$a \le b \Leftrightarrow a \land b = a$$
$$a \le b \Leftrightarrow a \lor b = b$$

Let lup(x, y) = z. Since we've shown \leq is a partial order relation, according to the definition of the least upper bound, we have:

$$x \le z, y \le z$$

if $x \le z'$ and $y \le z'$ then $z \le z'$.

Using the first condition, $x \le z$ and $y \le z$, we can derive $x \lor y \le z$.

$$x \le z, y \le z$$

$$\Rightarrow x \lor z = z, y \lor z = z$$

$$\Rightarrow x \lor z = x \lor (y \lor z)$$

$$= (x \lor y) \lor z$$

$$= z$$

$$\Rightarrow x \lor y \le z.$$

Using the second condition, if $x \le z'$ and $y \le z'$ then $z \le z'$, we can derive that $z \le x \lor y$.

$$x \lor (x \lor y) = (x \lor x) \lor y$$
$$= x \lor y$$
$$\Rightarrow x \le x \lor y$$
$$y \lor (x \lor y) = y \lor (y \lor x)$$
$$= (y \lor y) \lor x$$
$$= y \lor x$$
$$= x \lor y$$
$$\Rightarrow y \le x \lor y$$

At this point, we have $x \lor y \le z$ and $z \le x \lor y$. According to the *antisymmetric* rule of a partial order set, the two elements, z and $x \lor y$ are the same. Hence $x \lor y = z = lub(x, y)$.