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Midterm Exam Question 3, 5, and 6

Question: Show that if N ≤ Z(G) and G/N is abelian, then G is nilpotent of class at most 2.

Answer: Let G′ be the commutator of group G, G′ = [G,G]. We know that commutator is the smallest

normal subgroup of G such that the quotient group is abelian. In other words, if H ⊳ G and

G/H is abelian, then G′ ≤ H .

In this problem, we have the following relation:

N ≤ Z(G) ⇒ N ⊳ G and G/N is abelian

⇒ G′ ≤ N

⇒ G′ ≤ Z(G)

⇒ [G′, G] = {e}.

Therefore we’ve shown that in the following series, G2 is {e}.

G0 = G, G1 = [G,G], G2 = [G1, G], · · · , Gi+1 = [Gi, G].

If G1 = G′ = {e}, then group G is nilpotent of class 1. If G1 = G′ 6= {e}, then group G is

nilpotent of class 2. In summary, group G is a nilpotent group of class at most 2.

Question: Let G be a group of order 255 = 3 · 5 · 17 and let P be a Sylow 17 subgroup.

a. Prove that P is normal in G.

Answer: According to the Sylow Theorem, the number of Sylow p subgroups is congruent to 1 mod p.

n17 = 1, 18, 35 · · · .

Also, if |G| = pkm, then the number of Sylow p subgroups divides m.
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n17 | 15 ⇒ n17 = 1.

Since the only choice for |Syl17(G)| is 1, we’ve shown P ⊳ G.

b. Using the fact that |Aut(P )| = 16, prove that P ≤ Z(G).

Answer: Let’s define a map ϕg as ϕg(p) = gpg−1, where g ∈ G and p ∈ P . Since P is normal, gpg−1 ∈ P

for ∀g ∈ G, ϕg is, therefore, a map from P to P . It is also easy to show that ϕg is a group

homomorphism. In other words, ϕg ∈ Aut(P )

ϕg (p1p2) = gp1p2g
−1

ϕg (p1)ϕg (p2) = gp1g
−1gp2g

−1 = gp1p2g
−1

⇒ ϕg (p1p2) = ϕg (p1)ϕg (p2) .

Now let’s assume gk = e, where g ∈ G, |g| = k. Since k is in fact the order of the cyclic subgroup

of G generated by g, according to the Lagrange’s Theorem, k | G. Let’s also assume |ϕg| = 2r.

Since the order of ϕg has to divide |Aut(P )| = 24, we have r ∈ {0, 1, 2, 3, 4}. We can show that

|ϕg| divides |g|.

(ϕg)
k
(x) = (ϕg)

k−1
◦ ϕg (x)

= (ϕg)
k−1 (

gxg−1
)

= (ϕg)
k−2 ◦ ϕg

(
gxg−1

)

= (ϕg)
k−2 (

ggxg−1g−1
)

= · · · =
g · · · g
︸ ︷︷ ︸

k
x
g−1 · · · g−1

︸ ︷︷ ︸

k
= x.

Hence, we’ve shown that (ϕg)
k

is the identify map, (ϕg)
k = eAut(G). At the same time (ϕg)

2r =

eAut(G), and 2r is the smallest such power by definition. So we have 2r | k. Meanwhile, k | |G|.

2r | k, and k | |G|

⇒ 2r | |G|

⇒ 2r | (3 · 5 · 17) .

Prime factor 2 is not in 3 · 5 · 17, hence r = 0. So, |ϕg| = 20 = 1, in other words, ϕg = eAut(G).

ϕg(p) = p

⇒ gpg−1 = p
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⇒ gp = pg, ∀g ∈ G, and ∀p ∈ P

⇒ P ≤ Z(G).

c. Show that G is nilpotent.

Answer: Since P ≤ Z(G), |P | = 17, and |G| = 3 · 5 · 17, It is clear that there are three possible orders of

the center Z(G):

Case-1 |Z(G)| = 17 · 3.

|Z(G)| = 17 · 3

⇒ |G/Z(G)| = 5

⇒ G/Z(G) is abelian

⇒ G/Z(G) is nilpotent

⇒ G is nilpotent.

Case-2 |Z(G)| = 17 · 5.

|Z(G)| = 17 · 5

⇒ |G/Z(G)| = 3

⇒ G/Z(G) is abelian

⇒ G/Z(G) is nilpotent

⇒ G is nilpotent.

Case-3 |Z(G)| = 17 · 3 · 5.

|Z(G)| = 17 · 3 · 5

⇒ |Z(G)| = |G|

⇒ Z(G) = G

⇒ G is abelian

⇒ G is nilpotent.

In summary, we’ve shown that in any of the three possible cases, G is a nilpotent group.

d. Show that G is cyclic.

Answer: A finite nilpotent group G is the direct product of its Sylow subgroups. The Slow subgroups of

G all have prime orders, 17, 3, and 5. A group of prime order is isomorphic to the quotient of

the group of integers. So, we have Sylow 17 subgroup P17, Sylow 3 subgroup, P3, and Sylow 5

subgroup, P5 satisfying the following relationships:
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P17
∼= Z17

P3
∼= Z3

P5
∼= Z5.

Therefore, G = P17 × P3 × P5 = Z17 × Z3 × Z5. At the same time, since GCD(3, 5, 17) = 1,

Z17 × Z3 × Z5
∼= Z17·3·5 = Z225, which is cyclic.

G = P17 × P3 × P5
∼= Z225

⇒ G is cyclic.

Question: Show that there is no simple group of order p3q, where p and q are distinct primes.

Answer: According to the Sylow Theorem, the number of Sylow p subgroups is congruent to 1 mod p.

np = 1, p+ 1, 2p+ 1 · · ·

nq = 1, q + 1, 2q + 1 · · · .

Also, if |G| = pkm, then the number of Sylow p subgroups divides m. So we have the following

conditions, where, k1, k2 ∈ 0, 1, 2, · · ·

np | q ⇒ (k1p+ 1) | q

nq | p3 ⇒ (k2q + 1) | p3.

Case-1 q < p. Since (k1p+ 1) | q, we have the following inequality:

(k1p+ 1) | q ⇒ k1p+ 1 ≤ q

⇒ k1p+ 1 < p

⇒ k1p < p− 1

⇒ (1− k1) p > 1

⇒ k1 = 0

np = k1p+ 1 = 1.

So |Sylp(G)| = 1, therefore, P ⊳ G, where P ∈ Sylp(G), |P | = p3. Hence we’ve

found a non-trivial normal subgroup of G, G is not simple.

Case-2 q > p. We have nq | p3. There are only four possible nq’s, that divide p3. They are

discussed below one by one.
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Case-2-1 nq = 1. If this is the case, then we’re done, since we’ve found a non-trivial normal

subgroup of |G|. Namely, Q ⊳ G, where Q ∈ Sylq(G), |Q| = q.

Case-2-2 nq = p. Since nq = k2q + 1, we have:

nq = k2q + 1 = p

⇒ k2q + 1 < q

⇒ (1− k2) q < 1

⇒ k2 = 0

nq = k2q + 1 = 1

As shown in Case-2-1, G is not simple since it has a non-trivial normal subgroup

Q, where Q is the only element in Sylq(G).

Case-2-3 nq = p2. Since nq = k2q + 1, we have:

nq = k2q + 1 = p2

⇒ k2q = p2 − 1 = (p− 1) (p+ 1) .

So the prime factor q is in (p− 1)(p+1). Since p− 1 < q− 1 < q, q must be in p+1.

In other words, q | (p+1)with p, q are both prime numbers. The only combination

of prime numbers that satisfy this condition is p = 2 and q = 3.

The problem is converted to proving there is no simple group order |G| = 23 ·

3 = 24. According to the Sylow Theorem, the number of Sylow p subgroups is

congruent to 1 mod p.

n2 = 1, 3, 5 · · · .

Also, if |G| = pkm, then the number of Sylow p subgroups divides m.

n2 | 3 ⇒ n2 = 1 or 3.

If n2 = 3 then we can define a group action of G acting on the coset space of the

Sylow 2 subgroup, P . [G : P ] = 3. With this, we see that |G| ≤ S3, and derive the

following contradiction:

|G| = 24 ≤ |S3| = 6.

Hencen2 6= 3, so n2 = 1. As discussed previously, we’ve found a non-trivial normal

subgroup of |G|. Namely, the Slow 2 subgroup. So |G| is not simple.

Case-2-4 nq = p3. We count the number of elements with order q. It is (q − 1) · p3. Hence

the number elements left is:
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|G| − (q − 1) · p3 = q · p3 − (q − 1) · p3

= p3.

An element count of p3 is enough for only one Sylow p subgroup. Therefore in this

case, we derived that np = 1. As shown in Case 1, G is not simple since it has a

non-trivial normal subgroup P , where P ∈ Sylp(G).

In summary, we’ve discussed every possible p’s and q’s, and the conclusion is that there is no

simple group of order p3q.
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