Student: Yu Cheng (Jade)

Math 612

Final Presentation Draft

April 27, 2011

Problem: Show that $\Phi_n(x)$ is irreducible over \mathbb{Q} .

Proof: First we want to show that $\Phi_n(x) \in \mathbb{Z}[x]$. This is proved in class by induction.

The root of unity ζ_n is an algebraic integer since there exists a monic polynomial, $x^n - 1$, such that ζ is a root. Equivalently, the minimal polynomial $m_{\zeta_n}(x) \in \mathbb{Q}[x]$ is in $\mathbb{Z}[x]$. We claim that $\Phi_n(x) = m_{\zeta_n}(x)$. By definition, $m_{\zeta_n}(x)$ is monic and irreducible over \mathbb{Q} , so $\Phi_n(n)$ is irreducible over \mathbb{Q} .

We can express $m_{\zeta_n}(x)$ as the following, where $a_1, \dots, a_r \in \mathbb{Q}$ are the roots.

$$m_{\zeta_n}(x) = (x - a_1) \cdot (x - a_2) \cdot \cdots \cdot (x - a_r).$$

According to its definition $\Phi_n(x)$ can be expressed as the following, where $b_1, \dots, b_s \in \mathbb{Q}$ are the roots and $s = \varphi(x)$. φ is the Euler's totient function, the number of positive integers less than or equal to n that are co-prime to n.

$$\Phi_n (x) = \prod_{\substack{gcd(a,n)=1\\1 \le a < n}} (x - \zeta_n^a) \\ = (x - b_1) \cdot (x - b_2) \cdots (x - b_s).$$

To prove the claim, $\Phi_n(x) = m_{\zeta_n}(x) \in \mathbb{Q}$, we want to show that all roots of $m_{\zeta_n}(x)$ are also the roots for $\Phi_n(x)$, and vice versa. Since $m_{\zeta_n}(x)$ is irreducible over \mathbb{Q} , we just need to show all roots for $\Phi_n(x)$ are also roots for $m_{\zeta_n}(x)$. Because if there are other roots in $m_{\zeta_n}(x)$ that are not in $\Phi_n(x)$, it indicates $\Phi_n(x) \in \mathbb{Q}$ is a factor of $m_{\zeta_n}(x)$. This is a conflict.

All roots for $\Phi_n(x)$ are in the form ζ_n^p where *p* is a positive integer co-prime with *n*.

$$\Phi_n(x) = \prod_{\substack{gcd(a,n)=1\\1\leq a < n}} (x - \zeta_n^a)$$
$$= (x - \zeta_n^{p_1}) \cdot (x - \zeta_n^{p_2}) \cdots (x - \zeta_n^{p_s}).$$

So the problem is converted to proving an arbitrary ζ_n^p is a root for $m_{\zeta_n}(x)$. We will prove this by contradiction. Let's assume that ζ_n^p is not a root for $m_{\zeta_n}(x)$. Since ζ_n^p is a root in $x^n - 1$ we have the following relation.

$$x^{n} - 1 = m_{\zeta_{n}}(x) \cdot g(x)$$
$$\Rightarrow g(\zeta_{n}^{p}) = 0.$$

We can consider ζ_n as a root for polynomial $g(x^p)$. Since $m_{\zeta_n}(x)$ is the minimal polynomial of ζ_n , $m_{\zeta_n}(x)$ has to be a factor in $g(x^p)$.

$$g\left(x^{p}\right) = m_{\zeta_{n}}\left(x\right) \cdot h\left(x\right).$$

Let's take the polynomials on both sides and mod *p*.

$$\begin{split} g'\left(x^{p}\right) &= m'_{\zeta_{n}}\left(x\right) \cdot h'\left(x\right) \\ g'\left(x^{p}\right), \; m'_{\zeta_{n}}\left(x\right), \; h'\left(x\right) \in \mathbb{Q}_{p}\left[x\right] \end{split}$$

According to proposition 35 in Dummit & Foote, if a field *F* has a characteristic *p*, then for any $a, b \in F$ we have the following.

$$a^{p} + b^{p} = (a+b)^{p}$$
$$a^{p}b^{p} = (ab)^{p}.$$

Hence, we derive that $g'(x^p) = [g'(x)]^p$.

$$g'(x^{p}) = c_{0} + c_{1}x^{p} + c_{2}(x^{p})^{2} + c_{3}(x^{p})^{3} + \cdots$$
$$= c_{0} + c_{1}x^{p} + c_{2}(x^{2})^{p} + c_{3}(x^{3})^{p} + \cdots$$
$$= (c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} \cdots)^{p}$$
$$= [g'(x)]^{p}.$$

Plug this in the earlier equation.

$$\left[g'\left(x\right)\right]^{p} = m'_{\mathcal{L}}\left(x\right) \cdot h'\left(x\right).$$

Since \mathbb{Q}_p is a UFD, there is only one way to factorize a polynomial in \mathbb{Q}_p . Therefore, $m'_{\zeta_n}(x)$ and g'(x) have to share at least one common factor $I(x) \in \mathbb{Q}_p[x]$. Recall that we have $x^n - 1 = m_{\zeta_n}(x) \cdot g(x)$. We can mod p on both sides of this equation as well.

$$(x^{n} - 1) \mod p = m'_{\zeta_{n}}(x) \cdot g'(x)$$
$$= [I(x)]^{2} \cdot J(x)$$
$$I(x), J(x) \in \mathbb{Q}_{p}[x].$$

This indicates that $(x^n - 1) \mod p$ has duplicate roots in \mathbb{Q}_p . Furthermore, $x^n - 1$ has duplicate roots in \mathbb{Q}_p since $(x^n - 1) \mod p$ is a factor in $x^n - 1$. Now, let's evaluate the derivative polynomial of $x^n - 1$.

$$D_x \left(x^n - 1 \right) = n x^{n-1}$$

According to proposition 33 in Dummit & Foote, a polynomial f(x) has a multiple root α if and only if α is also a root of $D_x f(x)$. But $x^n - 1$ does not share any common factor with nx^{n-1} for p being relatively prime to n.

So, we've derived a contradiction. Namely, $x^n - 1$ cannot have duplicated roots in \mathbb{Q}_p . Therefore, ζ_n^p has to be a root in $m_{\zeta_n}(x)$ rather than a root in g(x), for $x^n - 1 = m_{\zeta_n}(x) \cdot g(x)$.

At this point, we've shown all roots in $\Phi_n(x)$ are also roots in $m_{\zeta_n}(x)$, and hence $\Phi_n(x) = m_{\zeta_n}(x)$. Since $m_{\zeta_n}(x)$ is irreducible over \mathbb{Q} , $\Phi_n(x)$ is irreducible over \mathbb{Q} .