Student: Yu Cheng (Jade) Math 612 Final Presentation Draft II May 08, 2011

Cyclotomic Extension

Goal: *K* is a field, ζ_n is a primitive root of unity in *K*, of order *n*.

- 1. Show the group of *n*th roots of unity in a field is cyclic
- 2. Introduce cyclotomic extension $K(\zeta_n)/K$.
- 3. Show that the cyclotomic extension of a field is Galois.
- 4. Show that the Galois group of the cyclotomic extension is embedded into the multiplicative group of integers modulo *n*. The number of elements in these groups is $\varphi(n)$.

$$Gal(K(\zeta_n)/K) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

5. Show that when $K = \mathbb{Q}$, this injective group homomorphism is isomorphic.

$$Gal\left(\mathbb{Q}\left(\zeta_{n}\right)/\mathbb{Q}\right) \cong \left(\mathbb{Z}/n\mathbb{Z}\right)^{\times}$$

Theorem 1: Any finite subgroup of the nonzero elements of a field, K^{\times} , form a cyclic group.

Proof: Let *G* be a subgroup of K^{\times} , the field formed by non-zero elements of *K* multiplicatively. *G* is an abelian group since it is embedded in a field which is commutitive. Let *n* be the maximal order of all elements in *G*. According to the general theory of abelian groups, if there are elements with orders n_1 and n_2 , then there exist an element with an order of $[n_1, n_2]$, the least common multiple.

$$g_{max} \in G, |g_{max}| = n$$
$$\forall g' \in G, |g'| = n'$$
$$\Rightarrow \exists g'', |g''| = [n', n]$$
$$\Rightarrow [n', n] \le n$$
$$\Rightarrow n' \mid n.$$

So every element in $g \in G$, g has an order that divides n, the maximal order for a group element. Since $g_{max}^n = 1_K$, every element of G is a root of $x^n - 1_K$.

$$\Rightarrow g^{n} - 1_{K} = \left(g^{n'}\right)^{n/n'} - 1_{K}$$
$$= \left(g^{n}_{max}\right)^{n/n'} - 1_{K}$$
$$= 0.$$

The polynomial $x^n - 1$ has at most n roots therefore $|G| \le n$. At the same time, the order of a group element divides the order of the group, $n \mid |G|$. This conclusion follows Lagrange's Theorem.

$$\begin{split} |G| &\leq n, \ n \mid |G| \\ \Rightarrow \quad n = |G| \\ \Rightarrow \quad \exists g \in G, \ |g| = |G| \\ \Rightarrow \quad G \text{ is cyclic.} \end{split}$$

Example 1: For any prime *p*, we know that $\mathbb{Z}/p\mathbb{Z}$ forms a field. The group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ under multiplication modulo *n*, contains the non-zero elements in $\mathbb{Z}/p\mathbb{Z}$. $(\mathbb{Z}/p\mathbb{Z})^{\times}$ forms a cyclic group. For instance $(\mathbb{Z}/5\mathbb{Z})^{\times} = \{1, 2, 3, 4\}$ is cyclic, and $\{2, 3\}$ are generators.

×	$[x]^1$	$[x]^2$	$[x]^3$	$[x]^4$
1	1	1	1	1
2	2	4	3	1
3	3	4	2	1
4	4	1	4	1

Example 2: Note that $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is not cyclic, since $\mathbb{Z}/p^r\mathbb{Z}$ is not a field for r > 1. For instance $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{1, 3, 5, 7\}$ is not cyclic.

×	$[x]^1$	$[x]^2$	$[x]^3$	$[x]^4$
1	1	1	1	1
3	3	1	3	1
5	5	1	5	1
7	7	1	7	1

Corollary: The group of *n*th roots of unity in a field, denoted by μ_n , is cyclic.

Proof: According to proposition 33 in Dummit & Foote, a polynomial f(x) has a multiple root α if and only if α is also a root of $D_x f(x)$. But $x^n - 1$ does not share any common factor

with nx^{n-1} . So $x^n - 1$ does not have duplicated roots in the splitting field over K. $x^n - 1$ is separable over K.

These distinct roots form a multiplicative group of size n. It is easy to show they follow the group properties (PFTS). In \mathbb{C} we can write down the nth roots of unity analytically as $e^{2\pi i k/n}$ for $0 \le k \le n-1$ and they form a cyclic group with generator $e^{2\pi i/n}$. In general, $(e^{2\pi i/n})^a$ are generators for $\forall a, (a, n) = 1$

Obviously this group is finite since the number or roots in $x^n - 1$ is *n*. According Theorem 1, any finite subgroup of the nonzero elements of a field, K^{\times} , form a cyclic group, The *n*th roots of unity in a field, μ_n , is cyclic.

Definition: Cyclotomic Extension

For any field K, a field $K(\zeta_n)$ where ζ_n is a root of unity, of order n, is called a cyclotomic extension of K. We start with an integer $n \ge 1$ such that $n \ne 0$ in K. That is, K has characteristic 0 and $n \ge 1$ is arbitrary or K has characteristic p and n is not divisible by p.

- **Theorem 2:** When $n \neq 0$ in K, the cyclotomic extension $K(\zeta_n)/K$ is a Galois extension, where ζ_n is a primative *n*th root of unity.
- **Proof:** Recall the several equivalent conditions for a field extension, K/F, to be Galois:
 - *K* is a splitting field of a separable polynomial over *F*.
 - The fixed field of Aut(K/F) is F.
 - [K:F] = |Aut(K/F)|
 - *K* is a finite normal separable extension of *F*.

Since any two primitive *n*th root of unity in a field are powers of each other, the extension $K(\zeta_n)$ is independent of the choice of ζ_n . We can write this field as $K(\mu_n)$: adjoining one primitive *n*th root of unity is the same as adjoining a full set of *n*th roots of unity.

In the proof of Theorem 1 Corollary, we've shown that $x^n - 1$ is separable over K. Also $K(\zeta_n)$ is a splitting field of $x^n - 1$. So $K(\zeta_n)$ is a splitting field of a separable polynomial over K, $K(\zeta_n)/K$ is a Galois extension according to the first condition.

- **Theorem 3:** For $\sigma \in Gal(K(\mu_n)/K)$, there is an $a \in \mathbb{Z}$ relatively prime to n such that $\sigma(\zeta) = \zeta^a$ for all nth roots of unity ζ . This a is well-defined modulo n.
- **Proof:** Let ζ_n be a generator of μ_n . In other words, ζ_n is a primitive *n*th root of unity. μ_n is a cyclic group as we've proved, so $\zeta_n^n = 1$, as well as any other primitive *n*th root of unity, $(\zeta_n^a)^n = 1$, where (a, n) = 1.

$$\sigma(1) = \sigma(\zeta_n^n)$$

$$= [\sigma(\zeta_n)]^n \quad \because \sigma \text{ is an automorphism}$$

$$= 1 \qquad \because \sigma \text{ fixes everything in } K$$

$$\Rightarrow [\sigma(\zeta_n)]^n - 1 = 0 \qquad \sigma(\zeta_n) \text{ satisfies } x^n - 1$$

$$\Rightarrow \sigma(\zeta_n) = \zeta_n^a \qquad \text{where } (a, n) = 1.$$

This a satisfies the condition to be proven.

$$\sigma(\zeta) = \sigma(\zeta_n^k) \quad \text{for some } k \because \zeta_n \text{ is a generator in } \mu_n$$

$$= [\sigma(\zeta_n)]^k \because \sigma \text{ is an automorphism}$$

$$= (\zeta_n^a)^k \quad \text{as we've shown above}$$

$$= (\zeta_n^k)^a \because \sigma \text{ is an automorphism}$$

$$= \zeta^a \qquad \because \zeta = \zeta_n^k.$$

We can think of *a* as an element in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then this operation becomes a map from $Gal(K(\mu_n)/K)$ to $(\mathbb{Z}/p\mathbb{Z})^{\times}$, $\theta : \sigma \mapsto a$.

- **Theorem 4:** The map θ : $Gal(K(\mu_n)/K) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ is an injective group homomorphism, where θ is defined by θ : $\sigma \mapsto a$ such that $\sigma(\zeta) = \zeta^a$.
- **Proof:** First we will show this map is a group <u>homomorphism</u>. Let $\sigma_1, \sigma_2 \in Gal(K(\mu_n)/K)$, ζ_n be a primitive *n*th root of unity. $\sigma_1(\zeta_n) = \zeta_n^a$ and $\sigma_2(\zeta_n) = \zeta_n^b$ where $a, b \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

$$\sigma_{1} \circ \sigma_{2} (\zeta_{n}) = \sigma_{1} (\zeta_{n}^{b}) \qquad \sigma_{2} (\zeta_{n}) = \zeta_{n}^{b}$$

$$= [\sigma_{1} (\zeta_{n})]^{b} \qquad \because \sigma' \text{s are automorphisms}$$

$$= (\zeta_{n}^{a})^{b} \qquad \sigma_{1} (\zeta_{n}) = \zeta_{n}^{a}$$

$$= (\zeta_{n})^{a \cdot b} \qquad \because \sigma' \text{s are automorphisms}$$

$$\Rightarrow \theta (\sigma_{1} \circ \sigma_{2}) = a \cdot b$$

$$= \theta (\sigma_{1}) \cdot \theta (\sigma_{2}).$$

Now we want to show this group homomorphism is *injective*. We will prove this by showing that the kernel of this group homomorphism is trival. Let $\theta(\sigma) = 1$, hence $\sigma(\zeta) = \zeta$, so σ is the identity map of $K(\zeta_n) = K(\mu_n)$. Basically, σ fixes everything in K and now it needs to fix every *n*th root of unity. Therefore σ is the identity map in $Gal(K(\mu_n)/K)$. $K(\mu_n)/K$ extensions have abelian Galois groups.

$$Gal(K(\zeta_n)/K) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Corollary: The group homomorphism defined above is an isomorphism when $K = \mathbb{Q}$.

$$Gal\left(\mathbb{Q}\left(\mu_{n}\right)/\mathbb{Q}\right) \cong \left(\mathbb{Z}/n\mathbb{Z}\right)^{\times}.$$

Proof: We need to show this group homomorphism is <u>surjective</u>. In other words, since we've shown the map is injective, we now want to show the size of two groups are the same. By definition, $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \varphi(n)$, the number of integers that are relatively prime to *n*. We want to show that $|Gal(\mathbb{Q}(\mu_n)/\mathbb{Q})|$ is also $\varphi(n)$.

According to Theorem 2, $Gal(\mathbb{Q}(\mu_n)/\mathbb{Q})$ is a Galois extension we have

$$\left[\mathbb{Q}\left(\mu_{n}\right):\mathbb{Q}\right] = \left|Gal\left(\mathbb{Q}\left(\mu_{n}\right)/\mathbb{Q}\right)\right|$$

So we need to show the degree of this field extension is $\varphi(n)$. Recall that the degree of a field extension, $[K(\alpha) : K]$ is the degree of $K(\alpha)$ as a vector space over K and therefore the degree of the field extension is equal to the degree of the minimum polynomial of α over K. So we want to show the degree of the minimum polynomial of ζ_n is $\varphi(n)$.

We've proved that $\Phi_n(x) \in \mathbb{Z}[x]$ and $\Phi_n(x)$ is irriducible over \mathbb{Q} . This tells us $deg(\Phi_n(x)) = deg(m_{\zeta_n,n}(x))$. The minimal polynomial of every primitive *n*th root of unity is in fact the cyclotomic polynomial, $\Phi_n(x)$. By definition, $deg(\Phi_n(x)) = \varphi(n)$. We are done.

In summary, we derived the conclusion of θ being isomorphic through the following steps.

$ Gal\left(\mathbb{Q}\left(\mu_{n}\right)/\mathbb{Q} ight) $	=	$\left[\mathbb{Q}\left(\mu_{n}\right):\mathbb{Q}\right]$	cyclotomic extension is Galois
	=	$deg\left(m_{\zeta_{n},n}\left(x\right)\right)$	proposition of extension field
	=	$deg\left(\Phi_{n}\left(x\right) \right)$	follow the fact that $\Phi_{n}(x)$ is irreducible over \mathbb{Q}
	=	$arphi\left(n ight)$	proposition of cyclotomic polynomial $\Phi_{n}\left(x\right)$
	=	$\left \left(\mathbb{Z}/n\mathbb{Z} \right)^{\times} \right $	proposition of the group of nonzero elements from a field

Therefore, θ is a group isormorphism, and we've shown $Gal\left(\mathbb{Q}(\mu_n)/\mathbb{Q}\right) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Theorem 5: Let *F* be a finite field with size $q = p^r$, where *p* is a prime. When *n* is not divisible by the prime *p*, the image of $Gal(F(\mu_n)/F)$ in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is $\langle q \mod n \rangle$. In particular $[F(\mu_n) : F]$ is the order of *q* mod *n*.

Proof: PFTS

Summary: There are not many general methods known for constructing abelian extensions of a field; cyclotomic extensions are essentially the only construction that works for all base fields. Other constructions of abelian extensions are Kummer extensions, Artin-Schreier-Witt extensions, and Carlitz extensions, but these all require special conditions on the base field and thus are not universally available.