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Cyclotomic Extension

Goal: K is a field, ζn is a primitive root of unity in K, of order n.

1. Show the group of nth roots of unity in a field is cyclic

2. Introduce cyclotomic extension K (ζn) /K.

3. Show that the cyclotomic extension of a field is Galois.

4. Show that the Galois group of the cyclotomic extension is embeded into the mul-

tiplicative group of integers modulo n. The number of elements in these groups is

ϕ (n).

Gal (K (ζn) /K) ↪→ (Z/nZ)
×
.

5. Show that when K = Q, this injective group homomorphism is isomorphic.

Gal (Q (ζn) /Q) ∼= (Z/nZ)
×
.

Theorem 1: Any finite subgroup of the nonzero elements of a field, K×, form a cyclic group.

Proof: Let G be a subgroup of K×, the field formed by non-zero elements of K multiplicatively.

G is an abelian group since it is embeded in a field which is commutitive. Let n be the

maximal order of all elements in G. According to the general theory of abelian groups,

if there are elements with orders n1 and n2, then there exist an element with an order of

[n1, n2], the least common multiple.

gmax ∈ G, |gmax| = n

∀g′ ∈ G, |g′| = n′

⇒ ∃g′′, |g′′| = [n′, n]

⇒ [n′, n] ≤ n

⇒ n′ | n.
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So every element in g ∈ G, g has an order that divides n, the maximal order for a group

element. Since gnmax = 1K , every element of G is a root of xn − 1K .

⇒ gn − 1K =
(
gn

′
)n/n′

− 1K

= (gnmax)
n/n′
− 1K

= 0.

The polynomial xn−1 has at most n roots therefore |G| ≤ n. At the same time, the order of

a group element divides the order of the group, n | |G|. This conclusion follows Lagrange’s

Theorem.

|G| ≤ n, n | |G|

⇒ n = |G|

⇒ ∃g ∈ G, |g| = |G|

⇒ G is cyclic.

Example 1: For any prime p, we know thatZ/pZ forms a field. The group (Z/pZ)
× under multiplication

modulo n, contains the non-zero elements in Z/pZ. (Z/pZ)
× forms a cyclic group. For

instance (Z/5Z)
×

= {1, 2, 3, 4} is cyclic, and {2, 3} are generators.

× [x]
1

[x]
2

[x]
3

[x]
4

1 1 1 1 1

2 2 4 3 1

3 3 4 2 1

4 4 1 4 1

Example 2: Note that (Z/prZ)
× is not cyclic, sinceZ/prZ is not a field for r > 1 . For instance (Z/8Z)

×
=

{1, 3, 5, 7} is not cyclic.

× [x]
1

[x]
2

[x]
3

[x]
4

1 1 1 1 1

3 3 1 3 1

5 5 1 5 1

7 7 1 7 1

Corollary: The group of nth roots of unity in a field, denoted by µn, is cyclic.

Proof: According to proposition 33 in Dummit & Foote, a polynomial f (x) has a multiple root

α if and only if α is also a root of Dxf (x). But xn − 1 does not share any common factor
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with nxn−1. So xn− 1 does not have duplicated roots in the splitting field overK. xn− 1 is

separable over K.

These distinct roots form a multiplicative group of size n. It is easy to show they follow

the group properties (PFTS). In C we can write down the nth roots of unity analytically as

e2πik/n for 0 ≤ k ≤ n − 1 and they form a cyclic group with generator e2πi/n . In general,(
e2πi/n

)a
are generators for ∀a, (a, n) = 1

Obviously this group is finite since the number or roots in xn − 1 is n. According Theorem

1, any finite subgroup of the nonzero elements of a field,K×, form a cyclic group, The nth

roots of unity in a field, µn, is cyclic.

Definition: Cyclotomic Extension

For any field K, a field K(ζn) where ζn is a root of unity, of order n, is called a cyclotomic

extension of K. We start with an integer n ≥ 1 such that n 6= 0 in K. That is, K has

characteristic 0 and n ≥ 1 is arbitrary or K has characteristic p and n is not divisible by p.

Theorem 2: When n 6= 0 in K, the cyclotomic extension K (ζn) /K is a Galois extension, where ζn is a

primative nth root of unity.

Proof: Recall the several equivalent conditions for a field extension, K/F , to be Galois:

• K is a splitting field of a separable polynomial over F .

• The fixed field of Aut (K/F ) is F .

• [K : F ] = |Aut (K/F )|

• K is a finite normal separable extension of F .

Since any two primitive nth root of unity in a field are powers of each other, the extension

K (ζn) is independent of the choice of ζn . We can write this field as K (µn): adjoining one

primitive nth root of unity is the same as adjoining a full set of nth roots of unity.

In the proof of Theorem 1 Corollary, we’ve shown that xn − 1 is separable over K. Also

K (ζn) is a splitting field of xn − 1. So K (ζn) is a splitting field of a separable polynomial

over K, K (ζn) /K is a Galois extension according to the first condition.
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Theorem 3: For σ ∈ Gal (K (µn) /K), there is an a ∈ Z relatively prime to n such that σ (ζ) = ζa for all

nth roots of unity ζ. This a is well-defined modulo n.

Proof: Let ζn be a generator of µn. In other words, ζn is a primitive nth root of unity. µn is a cyclic

group as we’ve proved, so ζnn = 1, as well as any other primitive nth root of unity, (ζan)
n

= 1,

where (a, n) = 1.

σ (1) = σ (ζnn )

= [σ (ζn)]
n ∵ σ is an automorphism

= 1 ∵ σ fixes everything inK

⇒ [σ (ζn)]
n − 1 = 0 σ (ζn) satisfies xn − 1

⇒ σ (ζn) = ζan where (a, n) = 1.

This a satisfies the condition to be proven.

σ (ζ) = σ
(
ζkn

)
for some k ∵ ζn is a generator in µn

= [σ (ζn)]
k ∵ σ is an automorphism

= (ζan)
k

as we′ve shown above

=
(
ζkn

)a
∵ σ is an automorphism

= ζa ∵ ζ = ζkn.

We can think of a as an element in (Z/pZ)
×, then this operation becomes a map from

Gal (K (µn) /K) to (Z/pZ)
×, θ : σ 7→ a.

Theorem 4: The map θ : Gal (K (µn) /K)→ (Z/nZ)
× is an injective group homomorphism, where θ is

defined by θ : σ 7→ a such that σ (ζ) = ζa.

Proof: First we will show this map is a group homomorphism. Let σ1, σ2 ∈ Gal (K (µn) /K), ζn be

a primitive nth root of unity. σ1 (ζn) = ζan and σ2 (ζn) = ζbn where a, b ∈ (Z/pZ)
×.

σ1 ◦ σ2 (ζn) = σ1
(
ζbn
)

σ2 (ζn) = ζbn

= [σ1 (ζn)]
b ∵ σ′s are automorphisms

= (ζan)
b

σ1 (ζn) = ζan

= (ζn)
a·b ∵ σ′s are automorphisms

⇒ θ (σ1 ◦ σ2) = a · b

= θ (σ1) · θ (σ2).
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Now we want to show this group homomorphism is injective. We will prove this by show-

ing that the kernel of this group homomorphism is trival. Let θ (σ) = 1, hence σ (ζ) = ζ,

so σ is the identity map of K (ζn) = K (µn). Basically, σ fixes everything in K and now

it needs to fix every nth root of unity. Therefore σ is the identity map in Gal (K (µn) /K).

K (µn) /K extensions have abelian Galois groups.

Gal (K (ζn) /K) ↪→ (Z/nZ)
×
.

Corollary: The group homomorphism defined above is an isomorphism when K = Q.

Gal (Q (µn) /Q) ∼= (Z/nZ)
×
.

Proof: We need to show this group homomorphism is surjective. In other words, since we’ve

shown the map is injective, we now want to show the size of two groups are the same. By

definition,
∣∣∣(Z/nZ)

×
∣∣∣ = ϕ (n), the number of integers that are relatively prime to n. We

want to show that |Gal (Q (µn) /Q)|is also ϕ (n).

According to Theorem 2, Gal (Q (µn) /Q) is a Galois extension we have

[Q (µn) : Q] = |Gal (Q (µn) /Q)| .

So we need to show the degree of this field extension is ϕ (n). Recall that the degree of a

field extension, [K (α) : K] is the degree of K (α) as a vector space over K and therefore

the degree of the field extension is equal to the degree of the minimum polynomial of α

over K. So we want to show the degree of the minimum polynomial of ζn is ϕ (n).

We’ve proved that Φn (x) ∈ Z [x] and Φn (x) is irriducible over Q. This tells us deg (Φn (x)) =

deg (mζn,n (x)). The minimal polynomial of every primitive nth root of unity is in fact the

cyclotomic polynomial, Φn (x). By definition, deg (Φn (x)) = ϕ (n). We are done.

In summary, we derived the conclusion of θ being isomorphic through the following steps.

|Gal (Q (µn) /Q)| = [Q (µn) : Q] cyclotomic extension is Galois

= deg (mζn,n (x)) proposition of extension field

= deg (Φn (x)) follow the fact that Φn (x) is irreducible over Q

= ϕ (n) proposition of cyclotomic polynomial Φn (x)

=
∣∣∣(Z/nZ)

×
∣∣∣ proposition of the group of nonzero elements from a field

Therefore, θ is a group isormorphism, and we’ve shown Gal (Q (µn) /Q) ∼= (Z/nZ)
×.

Theorem 5: Let F be a finite field with size q = pr, where p is a prime. When n is not divisible by the

prime p, the image of Gal (F (µn) /F ) in (Z/nZ)
× is 〈q mod n〉. In particular [F (µn) : F ] is

the order of q mod n.
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Proof: PFTS

Summary: There are not many general methods known for constructing abelian extensions of a field;

cyclotomic extensions are essentially the only construction that works for all base fields.

Other constructions of abelian extensions are Kummer extensions, Artin-Schreier-Witt ex-

tensions, and Carlitz extensions, but these all require special conditions on the base field

and thus are not universally available.
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