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Class Notes, Exercises 2.18

Question 1 Show that 2x5 − 6x3 + 9x2 − 15 is irreducible in both Z[x] and Q[x].

Answer: Eisentein Criterion states, if R is a UFD with quotient field F , and there is a polynomial f(x)

in R[x], f(x) = anx
n + · · · + a1x + a0. If there exists a prime p of R such that p divides all

coefficients except the an, and p2 does not divide a0, then f(x) is irreducible in F [x]. If f(x)

is primitive then it is also irreducible in R[x].

So, we need to find a prime number p ∈ Z, such that p | (−15), p | 9, p | (−6), p - 2 and

p2 - (−15). Obviously, p = 3 satisfies these conditions. Therefore, f(x) = 2x5− 6x3 + 9x2− 15

is irreducible in Q[x]. At the same time, gcd(2,−6, 9,−15) = 1, C(f(x)) = 1, a unit, so f(x) is

primitive and hence it is irreducible in Z[x] as well.

Question 2 Let f = y3 + x2y2 + x3y + x ∈ R[x, y], where R is a UFD. Show that f is irreducible in R[x, y].

(Hint: view R[x, y] as (R[x])[y] and note that x is irreducible, and hence prime in R[x].)

Answer: We can view R[x, y] as (R[x])[y], f = y3 + (x2)y2 + (x3)y + x ∈ R[x, y]. In a UFD irreducible

implies prime and vice versa. x ∈ R[x] is irreducible, and hence prime.

x | x, x | x3, x | x2

x - 1, x2 - x.

So, f = y3 + x2y2 + x3y + x satisfies the Eisentein Criterion, f is irreducible in R[x, y].

Question 3 Let p be a prime in Z and f = xp−1
x−1 . Show that f is irreducible in Z[x]. (Hint: show that

g(x) = f(x+ 1) is irreducible and use this to show f is irreducible.)

Answer: Let g(x) = f(x+ 1),

g(x) =
(x+ 1)p − 1

x

=
1

x

[
p∑

k=0

(p
k

)
xk − 1

]
∵ Binomial′s Theorem
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=
1

x

[(p
0

)
+
(p

1

)
x+

(p
2

)
x2 + · · ·+

(
p

p− 1

)
xp−1 + xp − 1

]
=

1

x

[(p
1

)
x+

(p
2

)
x2 + · · ·+

(
p

p− 1

)
xp−1 + xp

]
=

(p
1

)
+
(p

2

)
x+ · · ·+

(
p

p− 1

)
xp−2 + xp−1

=

p∑
k=1

(p
k

)
xk−1.

Now we can check that p ∈ Z is a prime that satisfies the Eisentein Criterion.(p
k

)
=

p!

k! · (p− k)!
⇒ p |

(p
k

)
,∀k ∈ [1, p− 1](

p

p

)
= 1 ⇒ p -

(
p

p

)
(p

1

)
= p ⇒ p2 -

(p
1

)
.

Therefore, g(x) is irreducible in Q[x]. Since g(x) is a monic, it is primitive. So, g(x) is also irre-

ducible inZ[x]. Assume f(x) is not irreducible inZ[x], f(x) = f1(x)·f2(x), where f1(x), f2(x) ∈
Z[x]. Then we have a contradiction.

f(x) = f1(x) · f2(x)

g(x) = f(x+ 1)

= f1(x+ 1) · f2(x+ 1).

We found a proper factorization of g(x) in Z[x], but g(x) is proven to be irreducible in Z[x].

Therefore, f(x) is irreducible in Z[x].

Class Notes, Exercises 3.2

Question 5 Suppose Mi, i = 1, 2, · · · , n are submodules of a module M such that the submodule gener-

ated by Mi’s is all of M that is M = M1 +M2 + · · ·+Mn. Also assume:

Mi ∩ (M1 + · · ·+Mi−1 +Mi + · · ·+Mn) = 0.

fori = 1, · · · , n. Show that M is isomorphic to the direct product (or direct sum, they are the

same for finite products) of the Mi’s.

Answer: We will first show thatM = M1 +M2 + · · ·+Mn is a module. Let r, s ∈ R, and x, y ∈M . M is
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closed under summation:

x+ y = (x1 + · · ·+ xn) + (y1 + · · ·+ yn)

= (x1 + y1) + · · ·+ (xn + yn) ∈M.

M is closed under the left multiplication with elements in R:

rx = r (x1 + · · ·+ xn)

= rx1 + · · ·+ rxn

rxi ∈Mi ∵M ′is are modules

⇒ rx1 + · · ·+ rxn = rx ∈M.

Show r(x+ y) = rx+ ry:

r (x+ y) = r ((x1 + · · ·+ xn) + (y1 + · · ·+ yn))

= r (x1 + · · ·+ xn) + r (y1 + · · ·+ yn) ∵ xi, yi r ∈ R

= rx+ ry.

Show (r + s)x = rx+ sx:

(r + s)x = (r + s) (x1 + · · ·+ xn)

= r (x1 + · · ·+ xn) + s (x1 + · · ·+ xn) ∵ xi, yi r ∈ R

= rx+ sx.

Show (rs)x = r(sx):

(rs)x = (rs) (x1 + · · ·+ xn)

= rsx1 + · · ·+ rsxn ∵ rs, xi ∈ R

r (sx) = r (s (x1 + · · ·+ xn))

= r (sx1 + · · ·+ sxn) ∵ xi, s ∈ R

= rsx1 + · · ·+ rsxn ∵ sxi, r ∈ R

⇒ (rs)x = r (sx) .

Now let’s define maps: φi : xi → xi from Mi to M , where the left xi ∈ Mi, the right xi ∈ M .

These maps are clearly homomorphisms. Let’s have a, b ∈Mi, a, b ∈M and r ∈ R.

φi (a+ b) = a+ b

= φi (a) + φi (b) .

φi(ra) = ra
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= rφi (a) .

According to the basic homomorphism property of the direct sum⊕n
1Mi, there is a homomorphism

φ from⊕n
1Mi to M . It is defined as:

φ : (x1, · · · , xn) →
n∑
1

xi.

Now we just need to show this homomorphism is in fact a isomorphism. We will first show

that it is surjective. For anyx ∈M , there exist (x1, · · · , xn) ∈ ⊕n
1Mi such thatφ (x1, · · · , xn) =

x. This is true according to the first given condition of M that M is generated by Mi’s,

M = M1 + · · ·+Mn.

We also need to show that φ is injective. For any x, y ∈ M , if x = y, then (x1, · · · , xn) =

(y1, · · · , yn), whereφ (x1, · · · , xn) = x andφ (y1, · · · , yn) = y. For (x1, · · · , xn) = (y1, · · · , yn),

it means xi = yi∀i ∈ [1, n]. Let’s assume that not all xi = yi, and pick out the ones that don’t

equal, i ∈ [k, s], xi 6= yi.

x = x1 + · · ·+ xn

y = y1 + · · ·+ yn

∵ x = y

⇒ x1 + · · ·+ xn = y1 + · · ·+ yn

⇒ xk + · · ·+ xs = yk + · · ·+ ys where xi 6= yi

⇒ xk − yk = (xk+1 − yk+1) + · · ·+ (xs − ys)

∵ xk 6= yk ⇒ xk − yk = (xk+1 − yk+1) + · · ·+ (xs − ys) 6= 0.

Now we’ve obtained xk − yk ∈Mk not being the zero element, and xk − yk can be generated

by Mk+1, · · · ,Ms This is a conflict with the second given condition:

Mi ∩ (M1 + · · ·+Mi−1 +Mi + · · ·+Mn) = 0.

Hence xi = yi∀i ∈ [1, n], and the map is injective. At this point, we’ve shown there is a

isomorphic map from the direct sum ⊕n
1Mi to M , hence we’ve shown that M is isomorphic

with the direct sum (direct product).

Class Notes, Exercises 3.5

Question 1 Show that if A is an n−generated module over a PID and B is a submodule of A, then B can

be generated by a set with at most nelements.
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Answer: Since A is a n generated module, it has a set of n generators. Hence there exist a homomor-

phism, φ, from the free module RR
n to A:

φ : RR
n → A.

B is a submodule of A, B ≤ A. We can prove that φ−1(B) forms a submodule of RR
n. It is

closed under summation, φ−1(b1) + φ−1(b2) = φ−1(b1 + b2) ∈ φ−1(B). It is closed under left

multiplication with elements in R, r · φ−1(b) = φ−1(r · b) ∈ φ−1(B). Hence φ−1(B) ≤ RR
n

and φ defines an homomorphism from φ−1(B) to B.

φ : φ−1(B)→ B.

The theorem stated that if R is a PID, any submodule of RR
n is free and has a rank less than

or equal to n. Hence, φ−1(B) is a free module with a rank less than or equal to n. In other

words, φ−1(B) = RR
m where m ≤ n, since any free module generated by a set of k elements

is isomorphic to RR
k. Therefore B is generated by at most n elements.

φ : RR
m → B, m ≤ n.

Class Notes, Exercises 3.9

Question 1 LetR be a Euclidean domain and let SLn(R) be all n×nmatrices overRwith determinant 1.

Show that the group SLn(R) is generated by the elementary matrices of the first kind, those

of the form Tij(b) = In + bEij , i 6= j.

Answer: Our goal is to transform a special linear matrix into the identity matrix with only row and

columns operations involving elementary matrices of the first kind, Tij(b). In other words,

we want to complete this transformation with only shear operations, in which we change a

row or column by adding to it a scalar multiplication of another row or column.

First we’re going to prove the statement is true if R is a field. Let’s have A ∈ SLn(R) and

A = (aij).

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

 .

5



Let’s assume that a21 6= 0, then we can make a11 = 1, regardless of the value of a11. This is

done by applying a left multiplication of a shear operation to A,

T12 (b) ·A =


1 b · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1

 ·

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann



=


1 a′12 · · · a′1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann


⇒ b =

1− a11
a21

.

If a21 = 0, obviously the equation for b is undefined. Hence we need to be able to transform

with shear operations so that a21 6= 0 can always be achieved. Since det(A) = 1, there exist

some an1 6= 0, ∃ax1 6= 0.

T2x (1) ·A =


1 0 · · · · · · · · · 0

0 1 · · · c · · · 0
...

...
...

...
...

...

0 0 · · · · · · · · · 1

 ·

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann



=


a11 a12 · · · a1n

ax1 a′22 · · · a′2n
...

...
...

...

an1 an2 · · · ann

 where ax1 6= 0.

Therefore we can always start with a a21 6= 0 and obtain a equivalent matrix with its a11 = 1.

A′ =


1 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

 .

Now we can show that we are able to eliminate all non-zero values from row 1 and column 1

except a11 = 1. For instance, for column 1 element, ap1 6= 0, we can apply a left multiplication
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with Tp1(−ap1) to make it zero.

Tp1 (−ap1) ·A′ =



1 0 · · · 0

0 1 · · · 0
...

...
...

...

−ap1
...

...
...

...
...

...
...

0 0 · · · 1


·


1 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann



=



1 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

0
...

...
...

...
...

...
...

an1 an2 · · · ann


.

For row 1 element, a1q 6= 0, we can apply a right multiplication with T1q(−a1q) to make it

zero.

A′ · T1q (−a1q) =


1 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

 ·


1 0 · · · −a1q · · · 0

0 1 · · · · · · · · · 0
...

...
...

...
...

...

0 0 · · · · · · · · · 1



=


1 a12 · · · 0 · · · a1n

a21 a22 · · · · · · · · · a2n
...

...
...

...
...

...

an1 an2 · · · · · · · · · ann

 .

After the above equivalent transformations that get ride of non-zero elements in the first row

and first column, we obtain an equivalent matrix of the original special linear matrix in the

following form:

A′′ =


1 0 · · · 0

0 a22 · · · a2n
...

...
...

...

0 an2 · · · ann

 .

Now we can induct on n. The problem is reduced to the bottom right sub-matrix. Hence we

just need to show that the base case holds. When n = 1,A = [1] since det(A) = 1. A is a shear

elementary matrix, and hence the base case holds. Therefore, we’ve shown that through a
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series of shear transformations we can obtain the identity matrix as an equivalent matrix of

A ∈ SLn(R). Since all elementary matrices are invertible, and their inverses belong to the

same class of elementary matrices.

ΠTij(bk) ·A = In

⇒ A = ΠT ′ij(bk) · In

⇒ A = ΠT ′ij(bk).

At this point, we’ve shown that the elementary matrices of the first kind generate the SLn(R)

when R is a field, since an arbitrary A ∈ SLn(R) can be written as a series of elementary

matrices of the first kind.

When R is not a field, the fractions are not defined, we apply the procedure of transforming

A to its Smith Normal Form first and then to the identity matrix. We’ve shown in class that

we can transformA ∈ GLn(R), whereR is an Euclidean Domain (E.D), into its Smith Normal

Form with Tij(b) and Pij elementary matrices.

All row or column exchanging operations can be replaced with combinations of scaling op-

erations and shear operations. Hence, the transformation into the Smith Normal Form can

be done with Tij(b) and Di(−1) elementary matrices.

Di(−1) ·



. . . . . . . . . . . .

a b c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

−a −b −c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .



Tij(1) ·



. . . . . . . . . . . .

−a −b −c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

d− a e− b f − c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .



Tji(−1) ·



. . . . . . . . . . . .

d− a e− b f − c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

d− a e− b f − c . . .
...

...
...

...

a b c . . .

. . . . . . . . . . . .
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Tij(1) ·



. . . . . . . . . . . .

d− a e− b f − c . . .
...

...
...

...

a b c . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

d e f . . .
...

...
...

...

a b c . . .

. . . . . . . . . . . .



= Pij ·



. . . . . . . . . . . .

a b c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .


.

⇒ Pij = Tij(1) · Tji(−1) ·Di(−1).

We notice that we can always pull the scaling to the left side of the sheer when the scaling is

Di(−1). When the row and column involved in the scaling are not involved in the shearing,

the multiplication is commutative. For example:
1 0 0

p 1 0

0 0 1

 .


1 0 0

0 1 0

0 0 −1

 =


1 0 0

p 1 0

0 0 −1



=


1 0 0

0 1 0

0 0 −1

 ·


1 0 0

p 1 0

0 0 1

 .

When the row and column involved in the scaling is also involved in the shearing, the mul-

tiplication is not commutative, but can still be swapped with a modification to the shear

matrix. For example:
1 0 p

0 1 0

0 0 1

 .


1 0 0

0 1 0

0 0 −1

 =


1 0 −p
0 1 0

0 0 −1



=


1 0 0

0 1 0

0 0 −1

 ·


1 0 −p
0 1 0

0 0 1

 .

Therefore, the series of Tij(b) and Di(−1) elementary matrices can be written as

∏
Di(−1) ·

∏
Tij(bk) ·A ·

∏
D′i(−1) ·

∏
T ′ij(b

′
k) = ASmith−Normal−Form

∵ det (Di(−1)) = −1

∵ det (Tij(bk)) = 1

∵ det (A) = 1
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⇒ det (ASmith−Normal−Form) = 1 or − 1.

Since factions are not defined when R is just an E.D, not a field, the invariant factors of

ASmith−Normal−Form are either 1 or−1, di ∈ {1,−1}. In this case, to transformASmith−Normal−Form

to the identity matrix, we simply need to multiply Di(−1) for the columns (rows) that has

di = −1. Therefore we have

∏
D′′i (−1) ·ASmith−Normal−Form

=
∏

D′′i (−1) ·
∏

Di(−1) ·
∏

Tij(bk) ·A ·
∏

D′i(−1) ·
∏

T ′ij(b
′
k)

= In

⇒ A =

m∏
1

D′′′i (−1) ·
∏

T ′′ij(b
′′
k) ·

∵ det (A) = 1

⇒ m ∈ N is even.

Now we just need to show that Di(−1) ·Dj(−1) can be written as a series of multiplications

of Tij(b). For example:[
−1 0

0 1

]
.

[
1 0

0 −1

]
=

[
−1 0

0 −1

]

=

[
1 0

1 1

]
·

[
1 −2

0 1

]
·

[
1 0

1 1

]
·

[
1 −2

0 1

]
.

This conversion is valid in general. In other words, Di(−1) ·Dj(−1) can always be changed

into a series of four Tij(b) multiplications.

Tij (−2) ·



. . . . . . . . . . . .

a b c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

a− 2d b− 2e c− 2f . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .



Tji (1) ·



. . . . . . . . . . . .

a− 2d b− 2e c− 2f . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

a− 2d b− 2e c− 2f . . .
...

...
...

...

a− d b− e c− f . . .

. . . . . . . . . . . .
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Tij (−2) ·



. . . . . . . . . . . .

a− 2d b− 2e c− 2f . . .
...

...
...

...

a− d b− e c− f . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

−a −b −c . . .
...

...
...

...

a− d b− e c− f . . .

. . . . . . . . . . . .



Tji (1) ·



. . . . . . . . . . . .

−a −b −c . . .
...

...
...

...

a− d b− e c− f . . .

. . . . . . . . . . . .


=



. . . . . . . . . . . .

−a −b −c . . .
...

...
...

...

−d −e −f . . .

. . . . . . . . . . . .



= Di(−1) ·Dj(−1) ·



. . . . . . . . . . . .

a b c . . .
...

...
...

...

d e f . . .

. . . . . . . . . . . .


⇒ Di(−1) ·Dj(−1) = Tji (1) · Tij (−2) · Tji (1) · Tij (−2) .

Now it is clear that we can re-write A into a series ofTij(b) multiplications.

A =

m∏
1

D′′′i (−1) ·
∏

T ′′ij(b
′′
k) where m is even

⇒ A =
∏

T ′′′ij (b′′′k )·

At this point, we’ve shown that if R is a E.D, but not a field, elementary matrices of the first

kind also generate the special linear matrix group. In summary, Tij(b) generate SLn(R) over

an E.D.
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