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Class Notes, Exercises 2.18

Question 1

Answer:

Question 2

Answer:

Question 3

Answer:

Show that 225 — 622 + 922 — 15 is irreducible in both Z[z] and Q[z].

Eisentein Criterion states, if R is a UFD with quotient field F, and there is a polynomial f(x)
in R[z], f(z) = ana™ + --- + a12 + ag. If there exists a prime p of R such that p divides all
coefficients except the a,,, and p? does not divide ay, then f(z) is irreducible in F[z]. If f(z)

is primitive then it is also irreducible in R[z].

So, we need to find a prime number p € Z, such thatp | (-15),p | 9,p | (—6),p t 2 and
p? 1 (—15). Obviously, p = 3 satisfies these conditions. Therefore, f(z) = 22° — 623 + 922 — 15
is irreducible in Q[z]. At the same time, ged(2,—6,9,—15) = 1, C(f(x)) = 1, a unit, so f(x) is

primitive and hence it is irreducible in Z[z] as well.
Let f = y3 + 2%y% + 2%y + = € R|z, y|, where R is a UFD. Show that f is irreducible in R[z, y].
(Hint: view R[z, y] as (R[z])[y] and note that « is irreducible, and hence prime in R|x].)
We can view R[z,y] as (R[z])[y], f = v + (z%)y® + (23)y + = € R[z,y]. In a UFD irreducible
implies prime and vice versa. z € R[] is irreducible, and hence prime.

x|z, x|, x| a?

ri1, 2% f .

So, f = y® + 2%y? + 23y + z satisfies the Eisentein Criterion, f is irreducible in R[z, y].

Let p be a prime in Z and f = ”;':__11. Show that f is irreducible in Z[z]. (Hint: show that

g(x) = f(x + 1) is irreducible and use this to show f is irreducible.)
Letg(z) = f(z + 1),

g(x) =

- Binomial's Theorem




Now we can check that p € Z is a prime that satisfies the Eisentein Criterion.

(z)k;.(ﬁ!_k)! = p|(Z>,Vk€[1,p—1]

()=1 = ()
p p
P\ 2, (P
(1) =¢ = #1(3)-
Therefore, g(x) is irreducible in Q[z]. Since g(x) is a monic, it is primitive. So, g(x) is also irre-

ducible in Z[z]. Assume f(z) isnotirreducible in Z[x], f(z) = f1(z)- fo(z), where f1(x), f2(z) €

Z[z]. Then we have a contradiction.
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We found a proper factorization of g(z) in Z|[z], but g(«) is proven to be irreducible in Z[z].

Therefore, f(z) is irreducible in Z[x].

Class Notes, Exercises 3.2

Question5 Suppose M;,: = 1,2,---,n are submodules of a module M such that the submodule gener-
ated by M;’s is all of M thatis M = M; + M5 + - - - + M,,. Also assume:

Min(My+--+M_y+M;+---+M,) = 0.

fori = 1,---,n. Show that M is isomorphic to the direct product (or direct sum, they are the

same for finite products) of the M;’s.

Answer: We will first show that M = M; + Ms + - - -+ M,, isamodule. Letr,s € R, and z,y € M. M is



closed under summation:

r+y = (w4 +z)+ W+t un)

M is closed under the left multiplication with elements in R:

re = r(zi+-+x,)
= rrp+---+ra,
rz; € M; " M!s are modules

= rx1+---+rx, =rr e M.

Show r(z + y) = ra + ry:

T(I+y) = T((z1+"'+xn)+(yl+"'+yn))
= T($1+"'+$n)+T(y1+"'+yn) '.'xi7yir€R
= rr+ry.

Show (r + s)z = rz + sa:

(r+s)xz = (r+s)(z1+---+xy)
= r(@m+ - Fz)+s(@+-+z,) cx, T €ER

= rx+sx.
Show (rs)z = r(sx):
(rs)x = (rs)(x1+- + )
= rsx1+---+rsxr, .rs, v, €R
r(sx) = r(s(z1+-+xz,))
= r(sx1+--+sx,) xy, SER
= rsri+---+rsxy, ST, TER
= (rs)z = r(sx).

Now let’s define maps: ¢; : x; — x; from M, to M, where the left z; € M;, the right =; € M.
These maps are clearly homomorphisms. Let’s have a,b € M;, a,b € M and r € R.

¢i(a+b) = a+b
= ¢i(a)+¢i(b).
pi(ra) = ra



= rg¢;(a).

According to the basic homomorphism property of the direct sum @7 M;, there is a homomorphism
¢ from @7 M, to M. It is defined as:

n

¢ (g, -, ) — in.

1

Now we just need to show this homomorphism is in fact a isomorphism. We will first show
thatitis surjective. For anyxz € M, there exist (z1, - -+, x,,) € &7 M; suchthat¢ (zq, -+, z,) =
z. This is true according to the first given condition of M that M is generated by M,’s,
M =My + -+ M,.

We also need to show that ¢ is injective. For any =,y € M, if z = y, then (z1, ---, z,,) =
(yla Ty yn)yWhereQS(xlv Ty mn) :xand¢(ylv T yn) =Y. FOI‘((El, Tty xn) = (yla Tty yn);

it means x; = y;Vi € [1,n]. Let’s assume that not all x; = y;, and pick out the ones that don't

equal, i € [k, s], x; # ;.

r = x1+--+x,
y =yt
T o=y
Sa dd T, = Yt Yn
=+ +as = Yyt +ys wherex; #y;
=k =y = (@ —yer) +oo A+ (B — ys)

VIR F Y = Tk — Yk = (Trgp1 — Yry1) T+ (s —ys) # 0.

Now we've obtained x;, — y, € My not being the zero element, and zj, — y;, can be generated

by Mj.41, - - -, M, This is a conflict with the second given condition:

MO (My+ -+ My + M+ -+ M,) = 0.

Hence z; = y;Vi € [1,n], and the map is injective. At this point, we've shown there is a
isomorphic map from the direct sum @7 M; to M, hence we've shown that M is isomorphic
with the direct sum (direct product).

Class Notes, Exercises 3.5

Question1 Show that if A is an n—generated module over a PID and B is a submodule of A4, then B can

be generated by a set with at most nelements.



Answer: Since A is a n generated module, it has a set of n generators. Hence there exist a homomor-

phism, ¢, from the free module g R™ to A:

B is a submodule of 4, B < A. We can prove that ¢—!(B) forms a submodule of zR". It is
closed under summation, ¢=1(b1) + ¢~ 1(ba) = ¢~ (b1 + b2) € ¢~ 1(B). Itis closed under left
multiplication with elements in R, r - ¢=1(b) = ¢~ 1(r - b) € ¢~(B). Hence ¢—*(B) < pR"

and ¢ defines an homomorphism from ¢~ (B) to B.

¢:¢ 1 (B)— B.

The theorem stated that if R is a PID, any submodule of z R™ is free and has a rank less than
or equal to n. Hence, ¢~ !(B) is a free module with a rank less than or equal to n. In other
words, $~1(B) = gk R™ where m < n, since any free module generated by a set of k elements

is isomorphic to g R*. Therefore B is generated by at most n elements.

¢:rR™ — B, m<n.

Class Notes, Exercises 3.9

Question1 Let R be a Euclidean domain and let SL,,(R) be all n x n matrices over R with determinant 1.
Show that the group SL,,(R) is generated by the elementary matrices of the first kind, those
of the form T;;(b) = I, + bE;;, i # j.

Answer: Our goal is to transform a special linear matrix into the identity matrix with only row and
columns operations involving elementary matrices of the first kind, 7%j(b). In other words,
we want to complete this transformation with only shear operations, in which we change a

row or column by adding to it a scalar multiplication of another row or column.

First we're going to prove the statement is true if R is a field. Let’s have A € SL,(R) and

A = (aij).
ailp a2 -+ Aaip
@21 Qa22 -+ A2p
A =
an1 an2 Tt Ann



Let’s assume that a2; # 0, then we can make a1; = 1, regardless of the value of a1;. This is

done by applying a left multiplication of a shear operation to A4,

0 air a2 a1n
0 1 0 az1 a2 Q2n
Ty (b)-A =
0 0 1 Ap1l  An2 Ann,
B / ’
I ay a1n
a1 422 a2n
L an1 An2 ot Qpp
1-— ail
= b= .
a21

If a1 = 0, obviously the equation for b is undefined. Hence we need to be able to transform
with shear operations so that as; # 0 can always be achieved. Since det(A) = 1, there exist

some a1 # 0, Ja,1 # 0.

1 O DRI DRI DRI 0 a’ll a12 DR alTL
0 1 C 0 0 a2 aon
Tor (1)- A =

L O 0 DY DY DY 1 a7L1 an2 DY a/n/n

aix aiz -+ QAin
/ /
Azl Gy - Qop
= ) ] ) ] where az # 0.
L Gn1 an2 T Qnn

Therefore we can always start with a as; # 0 and obtain a equivalent matrix with its a1, = 1.

1 app -+ a,
W @21 Qa22 - A2p
an1 an2 e Ann

Now we can show that we are able to eliminate all non-zero values from row 1 and column 1

exceptaq; = 1. For instance, for column 1 element, a,; # 0, we can apply aleft multiplication



with T},1 (—a,1) to make it zero.

0
0 1
1 ap - a,
, a1 Ag2 -+ A2p
Tpi (—ap) - A" =
—ap1
an1 aAn2 s Qpp
0 0 1
1 ap -+ a,
az; a2 -+ A2p
0
an1 an2 st Qpn

For row 1 element, a1, # 0, we can apply a right multiplication with T3,(—a1,) to make it

ZEro.
1 a2 - an 10 - —ay
, a21 a22 DY a2n 0 1 ... DY DY 0
A" Tig (—arq) =

anl an2 PRI ann 0 0 ... PR PRI 1

1 a12 PRI 0 PR aln

a21 a22 DR ... PRI a2n

L anl a/n2 DR DR DRI ann

After the above equivalent transformations that get ride of non-zero elements in the first row
and first column, we obtain an equivalent matrix of the original special linear matrix in the

following form:

A” 0 @22 st Q2n
0 An2 ctr A

Now we can induct on n. The problem is reduced to the bottom right sub-matrix. Hence we
just need to show that the base case holds. Whenn = 1, A = [1] since det(A) = 1. Ais ashear
elementary matrix, and hence the base case holds. Therefore, we've shown that through a



series of shear transformations we can obtain the identity matrix as an equivalent matrix of
A € SL,(R). Since all elementary matrices are invertible, and their inverses belong to the

same class of elementary matrices.

IT;;(bg) - A=1I,
= A= HTZ-’j(bk) -1,

At this point, we've shown that the elementary matrices of the first kind generate the SL,,(R)
when R is a field, since an arbitrary A € SL,,(R) can be written as a series of elementary

matrices of the first kind.

When R is not a field, the fractions are not defined, we apply the procedure of transforming
A to its Smith Normal Form first and then to the identity matrix. We've shown in class that
we can transform A € GL,,(R), where R is an Euclidean Domain (E.D), into its Smith Normal

Form with T;;(b) and P;; elementary matrices.

All row or column exchanging operations can be replaced with combinations of scaling op-
erations and shear operations. Hence, the transformation into the Smith Normal Form can

be done with T;;(b) and D;(—1) elementary matrices.

a b ¢ —a —-b —c
D;(-1) =
d e f d e f
—a -b —c ... d—a e—b f—c
Ti; (1) = :
d e f d e f
d—a e—b f—c . d—a e—b f—c
T:(-1) : =
d e f a b c




d—a e—b f—c ... d e f

Ti;(1) =
a b c a b c
a b c
= Py :
d e f
= Py = Ti;(1)-Tju(=1) - Di(=1).

We notice that we can always pull the scaling to the left side of the sheer when the scaling is
D;(—1). When the row and column involved in the scaling are not involved in the shearing,

the multiplication is commutative. For example:

100 10 10
p 10 0 1 = |p 1
00 1 00 -1 (00 1|
(1 0 1 [10 0
= 1 p 1 0
00 -1 00 1

When the row and column involved in the scaling is also involved in the shearing, the mul-
tiplication is not commutative, but can still be swapped with a modification to the shear

matrix. For example:

1 0 p 1 0 0 1 0 —p
0 1 0 0O 1 O = 10 1 0
0 0 1 0O 0 -1 _00—1_
(1 0 1710 —p
= 0 1 0O 1 O
0 -1 0 0 1

Therefore, the series of T;;(b) and D;(—1) elementary matrices can be written as

HDl(il) HT’Zj(bk) “A- HD;(*l) : Hﬂlj(b;) = ASmith—Normal—Form

det (Dy(—1)) = —1
det (T3;(br)) = 1
det (A) =1



= det (AS'mitthormalfForm) =1lor —1.

Since factions are not defined when R is just an E.D, not a field, the invariant factors of
Agmith—Normal—Form areeither 1or —1, d; € {1, —1}. In this case, to transform Ag,,ith— Normai— Form
to the identity matrix, we simply need to multiply D;(—1) for the columns (rows) that has

d; = —1. Therefore we have
HD// ASmith Normal—Form
=[ID/0-T]Di(=1) - [] 7o (be) - A- ] Di(=1) - T] 775 85)
=1,
= A= HDQN( HT// b//
1
det (A) =1

= m € Nis even.

Now we just need to show that D;(—1) - D,;(—1) can be written as a series of multiplications
of T;;(b). For example:

I
- T T

This conversion is valid in general. In other words, D;(—1) - D;(—1) can always be changed

into a series of four T;;(b) multiplications.

a b ¢ ... a—2d b—2 c—2f
Tij (=2) : =
d e f d e f
a—2d b—2e c—2f ... a—2d b—2e c—2f
Tji (1) : = :
d e f a—d b—e c—f

10



a—2d b—2e c—2f ... —a —b —c
T;5 (—2) = :
a—d b—e c—f a—d b—e c—f
—a —b —c —a —b —c
T;: (1) : : : : = A
a—d b—e c—f ... —-d —e —f
a b ¢

= Di(=1)-Dj(=1) = T3 (1) Ty (=2) - T;: (1) - Tij (=2).
Now it is clear that we can re-write A into a series ofT;; (b) multiplications.

A = H D! (-1 H T;;(by) wherem is even

= A HT/// b///

At this point, we've shown that if R is a E.D, but not a field, elementary matrices of the first
kind also generate the special linear matrix group. In summary, T;;(b) generate SL,,(R) over
an E.D.
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