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Question 3 Prove that 2 × 2 matrices over F which are not scalar matrices are similar if and only if they

have the same characteristic polynomial.

Answer: We will first prove if two matrices are similar then they have the same characteristic poly-

nomial. Let A ∼= B. According to the similar matrix definition, we have A = SBS−1. The

characteristic polynomial of A can be written as the following.

det (xI −A) = det
(
xI − SBS−1

)
= det

(
SxIS−1 − SBS−1

)
= det

[
S (xI −B)S−1

]
= det (S) · det (xI −B) · det

(
S−1

)
= det (S) · det

(
S−1

)
· det (xI −B)

= det
(
SS−1

)
det (xI −B)

= det (xI −B) .

Hence we’ve shown that the similar matrices share the same characteristic polynomial. Now

we need to to prove that if A,B have the same characteristic polynomial and they are 2 × 2

matrices, then they are similar to each other. Let’s have the characteristic polynomial be

charA(x) = x2 + ax+ b where a, b ∈ F ,

First let’s assume that charA(x) = x2 + ax+ b is a prime polynomial in F [x]. In this case, the

minimal polynomials ofA,B are the same,mA(x) = mB(x) = x2+ax+ b. Then we can write

the Smith Normal Form (SNF) for the x matrices of A,B as the following.

SNFA = SNFB

=

[
1 0

0 x2 + ax+ b

]
.

Apparently, they have the same Smith Normal Form. A,B are therefore similar. Now let’s

consider the case when charA(x) = x2 + ax + b is not a prime polynomial. If charA(x) =
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x2 + ax+ b = (x+ e)(x+ f), where e 6= f , then we still have the following.

SNFA = SNFB

=

[
1 0

0 (x+ e) (x+ f)

]
.

Now, let’s assume charA(x) = x2+ax+b = (x+e)2 for some e ∈ F . We also assumeA,B have

different minimal polynomials. WLOG let’s have mA(x) = x + e and mB(x) = (x + e)2. So,

A � x+ e, it follows thatA is a scalar matrix. Scalar matrices are excluded from the problem.

In other words, A 2 x+ e andmA(x) 6= x+ e, hence,mA(x) = mB(x) = (x+ e)2 = charA(x).

So whether or not charA(x) = x2+ax+b is a factorisable, we havemA(x) = mB(x) = char(x),

and hence SNFs ofA,B are the same. At this point, we’ve proven both sides, and we conclude

that non-scalar 2 × 2 matrices are similar to each other if and only if they have the same

characteristic polynomial.

Question 4 Prove that two 3 × 3 matrices are similar if and only if they have the same characteristic

and same minimal polynomials. Give an explicit counterexample to this assertion for 4 × 4

matrices.

Answer: We’ve shown in the previous question that if two matrices are similar, then they have the

same characteristic polynomials. It is clear two similar matrices have the same minimal

polynomial as well, since they have the same SNF for their x matrices. So we’ve shown one

direction.

Let two 3×3 matricesA,B have the same characteristic polynomial, charA(x), and the same

minimal polynomial,mA(x). IfmA(x) has a degree of 1, then we have only one possible SNF.

SNF (xI −A) =


mA(x) 0 0

0 mA(x) 0

0 0 mA(x)

 .
If mA(x) has a degree of 2, then we have only one possible SNF.

SNF (xI −A) =


1 0 0

0 charA(x)/mA(x) 0

0 0 mA(x)

 .
If mA(x) has a degree of 3, then we still have only one possible SNF.

SNF (xI −A) =


1 0 0

0 1 0

0 0 mA(x)

 .
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In summary, for a 3 × 3 matrix, the characteristic polynomial and the minimal polynomial

determine its x matrix’s SNF. Two 3× 3 matrices are similar if and only if they share both the

characteristic polynomial and the minimal polynomial.

A counter example can be derived as the following. Let’s have charA(x) = (x − 1)4 and

mA(x) = (x− 1)2. Then we can have the two different kind of SNFs.

SNF1(xI −A) =


1 0 0 0

0 1 0 0

0 0 (x− 1)
2

0

0 0 0 (x− 1)
2



SNF2(xI −A) =


1 0 0 0

0 x− 1 0 0

0 0 x− 1 0

0 0 0 (x− 1)
2

 .

First we compute the Rational Canonical Matrices (RCMs) for polynomials presented in the

SNFs.

RCM (x− 1) = [1]

RCM
(
(x− 1)

2
)

= RCM
(
x2 − 2x+ 1

)
=

[
0 −1
1 2

]
.

With these two SNFs and the RCMs, we can derive two different Rational Canonical Forms

(RCFs).

SNF1(xI −A) ⇒ RCF1(A) =


0 −1 0 0

1 2 0 0

0 0 0 −1
0 0 1 2



SNF2(xI −A) ⇒ RCF2(A) =


1 0 0 0

0 1 0 0

0 0 0 −1
0 0 1 2

 .

These two matrices share the same characteristic polynomial, charA(x) = (x − 1)4, and the

same minimal polynomial, mA(x) = (x− 1)2, but they are not similar to each other.

Question 6 Prove that the constant term in the characteristic polynomial of then×nmatrixA is (−1)ndet(A)
and that the coefficient of xn−1 is the negative of the sum of the diagonal entries of A (the
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sum of the diagonal entries of A is called the trace of A). Prove that the det(A) is the product

of the eigenvalues of A and that the trace of A is the sum of the eigenvalues of A.

Answer: First, we’ll show the constant term, c, in the characteristic polynomial of A is (−1)ndet(A).
Let’s call the characteristic polynomial charA(x). We have the following equality.

det(xI −A) = charA(x)

charA(0) = c

⇒ det(−A) = c.

Now, the problem comes down to proving det(−A) is (−1)ndet(A). This is easy, since we

know that the scale elementary matrix Di(b) affects the determinant by introducing a scalar

term b.

det (Di(b)A) = b · det(A).

FromA to−A, we’ve introducedn times of scale elementary operations,D0(−1), D1(−1), · · · , Dn(−1).

−A = D0(−1)D1(−1) · · ·Dn(−1)A

⇒ det(−A) = (−1)ndet(A).

Second, we’ll show that the coefficient of xn−1 is the negative of the sum of the diagonal

entries of A. The sum of the diagonal entries is called the trace of A. Let’s exam the xI − A
matrix.

A =


a · · · b
...

. . .
...

c · · · d



xI −A =


x− a · · · −b

...
. . .

...

−c · · · x− d


We’ll prove by induction. When n = 2, the to be proven statement holds.

A =

[
a b

c d

]

det (xI −A) = det

([
x− a −b
−c x− d

])
= x2 − (a+ d)x− bc.
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Let’s assume for a k× k matrixA the coefficient of xk−1 term in charA(x) is the negated trace

of A.

A =


a1 · · · ak
...

. . .
...

b1 · · · bk



det (xI −A) = det



x− a1 · · · −ak

...
. . .

...

−b1 · · · x− bk




= xk − (a1 + · · ·+ bk)x
k−1 + · · · .

Now we want to show extending A by one row and one column the given statement still

holds.

B =


c1 · · · · · · · · ·
... a1 · · · ak
...

...
. . .

...
... b1 · · · bk



det (xI −B) = (x− c1) · det



x− a1 · · · −ak

...
. . .

...

−b1 · · · x− bk


+ f(x)

= (x− c1) ·
(
xk − (a1 + · · ·+ bk)x

k−1 + · · ·
)
+ f(x)

=
[
xk+1 − (c1 + a1 + · · ·+ bk)x

k + · · ·
]
+ f(x).

Notice that f(x) in the equations above is obtained from the row/column expansion when

looking for the determinant of xI−B. Since exactly one row/column containing x is crossed

out for each term in f(x), the highest order in f(x) is k − 1. Therefore f(x) does not affect

the coefficient of the xk term. Hence we’ve proven by induction that the coefficient of the

second highest term in the characteristic polynomial is the negated tr(A).

Third, we’ll prove that det(A) is the product of the eigenvalues of A. This statement directly

follow the proof that the constant term, c, in the characteristic polynomial is−det(A). Since

eigenvalues of A are the roots of charA(x), we can write charA(x) as the following. It might

contain repeats of λi.

charA(x) = (x− λ1) · (x− λ2) · · · · · (x− λn) .

⇒ charA(x) = xn + · · ·+ ((−λ1) · (−λ2) · · · · · (−λn))

⇒ c = (−1)n λ1 · λ2 · · · · · λn

∵ c = (−1)n det(A)
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⇒ det(A) = λ1 · λ2 · · · · · λn

Finally, we’ll prove that the trace of A is the sum of the eigenvalues of A. This statement

directly follow the proof that the coefficient of xn−1 is the negated trace.

charA(x) = (x− λ1) · (x− λ2) · · · · · (x− λn) .

⇒ charA(x) = xn − (λ1 + λ2 + · · ·+ λn)x
n−1 + · · ·+ ((−λ1) · (−λ2) · · · · · (−λn))

⇒ −tr(A) = − (λ1 + λ2 + · · ·+ λn)

⇒ tr(A) = λ1 + λ2 + · · ·+ λn.

Question 7 Determine the eigenvalues of the matrix


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 .

Answer: We can easily determine that the determinant of this matrix is 1 by executing the row expan-

sion algorithm on the last row. The trace of the matrix is 0. According to the conclusions

proved in the previous question, we have the following constraints for the characteristic

polynomial and the eigenvalues.

charA(x) = x4 + ax2 − 1

λ1 · λ2 · λ3 · λ4 = 1

λ1 + λ2 + λ3 + λ4 = 0

We can verify this by computing these values.

det(xI −A) = det




x −1 0 0

0 x −1 0

0 0 x −1
−1 0 0 x




= x · det



x −1 0

0 x −1
0 0 x


+ det




0 −1 0

0 x −1
−1 0 x




= x4 − 1

⇒ λ1, λ2 = ±1

λ3, λ4 = ±i.
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Question 10 Find all similarity classes of 6 × 6 matrices over Q with minimal polynomial (x + 2)2(x −
1). It suffices to give all lists of invariant factors and write out some of their corresponding

matrices.

Answer: We know that the minimal polynomial of a matrix covers all prime divisors of the character-

istic polynomial and divides the characteristic polynomial. Also, the degree of the character-

istic polynomial is the size of the matrix. So, we derive the following possible characteristic

polynomials:

1. (x+ 2)5(x− 1)

2. (x+ 2)4(x− 1)2

3. (x+ 2)3(x− 1)3

4. (x+ 2)2(x− 1)4.

With these possible characteristic polynomials and the fact that the minimal polynomial is

the largest invariant factor, we can derive the possible sets of invariant factors.

charA(x) = (x+ 2)5(x− 1) ⇒ 1. {di(x)} =
{
x+ 2, (x+ 2)2, (x+ 2)2(x− 1)

}
2. {di(x)} =

{
x+ 2, x+ 2, x+ 2, (x+ 2)2(x− 1)

}
charA(x) = (x+ 2)4(x− 1)2 ⇒ 3. {di(x)} =

{
(x+ 2)2(x− 1), (x+ 2)2(x− 1)

}
4. {di(x)} =

{
x+ 2, (x+ 2)(x− 1), (x+ 2)2(x− 1)

}
charA(x) = (x+ 2)3(x− 1)3 ⇒ 5. {di(x)} =

{
x− 1, (x+ 2)(x− 1), (x+ 2)2(x− 1)

}
charA(x) = (x+ 2)2(x− 1)4 ⇒ 6. {di(x)} =

{
x− 1, x− 1, x− 1, (x+ 2)2(x− 1)

}
.

With these invariant factors we can construct the RCFs, each of which represents a similar

class of 6×6 matrices over Q with minimal polynomial (x+2)2(x−1). Two examples of such

similarity classes are constructed and shown below.

{di(x)} =
{
x+ 2, (x+ 2)2, (x+ 2)2(x− 1)

}
=

{
x+ 2, x2 + 4x+ 4, x3 + 3x2 − 4

}

⇒



−2 0 0 0 0 0

0 0 −4 0 0 0

0 1 −4 0 0 0

0 0 0 0 0 4

0 0 0 1 0 0

0 0 0 0 1 −3


{di(x)} =

{
x+ 2, x+ 2, x+ 2, (x+ 2)2(x− 1)

}
=

{
x+ 2, x+ 2, x+ 2, x3 + 3x2 − 4

}
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⇒



−2 0 0 0 0 0

0 −2 0 0 0 0

0 0 −2 0 0 0

0 0 0 0 0 4

0 0 0 1 0 0

0 0 0 0 1 −3


.

Question 14 Determine all possible RCFs for a linear transformation with characteristic polynomialx2
(
x2 + 1

)2
.

Answer: With the given characteristic polynomial, x2
(
x2 + 1

)2
, there are several possible choices of

the minimal polynomial.

1. mA(x) = x2
(
x2 + 1

)2
2. mA(x) = x

(
x2 + 1

)2
3. mA(x) = x2

(
x2 + 1

)
4. mA(x) = x

(
x2 + 1

)
.

We have the following possible lists of invariant factors.

mA(x) = x2
(
x2 + 1

)2 ⇒ 1. {di(x)} =
{
x2
(
x2 + 1

)2}
mA(x) = x

(
x2 + 1

)2 ⇒ 2. {di(x)} =
{
x, x

(
x2 + 1

)2}
mA(x) = x2

(
x2 + 1

)
⇒ 3. {di(x)} =

{
x2 + 1, x2

(
x2 + 1

)}
mA(x) = x

(
x2 + 1

)
⇒ 4. {di(x)} =

{
x
(
x2 + 1

)
, x
(
x2 + 1

)}
.

With these invariant factors we can construct the RCFs of the linear transformation.

{di(x)} =
{
x2
(
x2 + 1

)2}
=

{
x6 + 2x4 + x2

}

⇒



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 −1
0 0 1 0 0 0

0 0 0 1 0 −2
0 0 0 0 1 0


{di(x)} =

{
x, x

(
x2 + 1

)2}
=

{
x, x5 + 2x3 + x

}
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⇒



0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 −1
0 0 1 0 0 0

0 0 0 1 0 −2
0 0 0 0 1 0


{di(x)} =

{
x2 + 1, x2

(
x2 + 1

)}
=

{
x2 + 1, x4 + x2

}

⇒



0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 −1
0 0 0 0 1 0


{di(x)} =

{
x
(
x2 + 1

)
, x
(
x2 + 1

)}
=

{
x3 + x, x3 + x

}

⇒



0 0 0 0 0 0

1 0 −1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 −1
0 0 0 0 1 0


.

Question 15 Determine up to similarity all 2× 2 rational matrices (i.e., ∈M2(Q)) of precise order 4 (mul-

tiplicatively). Do the same if the matrix has entries from C.

Answer: MatrixA has order4, soA � x4− 1. Since the minimal polynomial ofA divides every polyno-

mial of which A satisfies. We have the following possibilities of mA(x) over Q.

A � x4 − 1 =
(
x2 + 1

)
(x+ 1) (x− 1)

⇒ mA(x) ∈
{
x2 + 1, x+ 1, x− 1

}
or mA(x) ∈

{(
x2 + 1

)
(x+ 1) ,

(
x2 + 1

)
(x− 1) , x2 − 1

}
or mA(x) ∈

{
x4 − 1

}
.

We are also given thatA has a precise order of 4, hence, A 2 x3 − 1, A 2 x2 − 1 and A 2 x− 1.

In other words, we have the following relationships.

x3 − 1 = (x− 1)
(
x2 + x+ 1

)
6= 0

x2 − 1 = (x+ 1) (x− 1) 6= 0

x− 1 6= 0.
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Since A � mA(x), by excluding x − 1, x + 1, and x2 − 1 we can narrow down the choices of

mA(x) to the following.

mA(x) ∈
{
x2 + 1,

(
x2 + 1

)
(x+ 1) ,

(
x2 + 1

)
(x− 1) , x4 − 1

}
.

The degree of mA(x) is smaller than the degree of the characteristic polynomial of A, which

is 2, hence we can narrow down the choice of mA(x) even more. Actually, only one left.

mA(x) = x2 + 1

⇒ SNF (xI −A) =

[
1 0

0 x2 + 1

]

⇒ RNF (A) =

[
0 −1
1 0

]
.

Let’s do the same with 2×2 matrices over C. Since we can factor x4−1 further, we have more

candidates for mA(x).

A � x4 − 1 = (x+ i) (x− i) (x+ 1) (x− 1)

⇒ mA(x) ∈ {x+ i, x− i, x+ 1, x− 1}

or mA(x) ∈
{
x2 + 1, (x+ i) (x+ 1) , (x+ i) (x− 1) , (x− i) (x+ 1) , (x− i) (x− 1) , x2 − 1

}
or mA(x) ∈

{(
x2 + 1

)
(x+ 1) ,

(
x2 + 1

)
(x− 1) , (x+ i)

(
x2 − 1

)
, (x− i)

(
x2 − 1

)}
.

Since A � mA(x), by excluding x − 1, x + 1, and x2 − 1 we can narrow down the choices of

mA(x). Also the degree of mA(x) cannot be more than 2 as argued previously.

mA(x) ∈ {x+ i, x− i}

or mA(x) ∈
{
x2 + 1, (x+ i) (x+ 1) , (x+ i) (x− 1) , (x− i) (x+ 1) , (x− i) (x− 1)

}
.

With these 7 minimal polynomials, we can derive 7 sets of invariant factors. With the derived

invariant factor sets, we can derive all similarity classes.

mA(x) = x+ i

⇒ SNF (xI −A) =

[
x+ i 0

0 x+ i

]

⇒ RNF (A) =

[
−i 0

0 −i

]
mA(x) = x− i

⇒ SNF (xI −A) =

[
x− i 0

0 x− i

]
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⇒ RNF (A) =

[
i 0

0 i

]
mA(x) = x2 + 1

⇒ SNF (xI −A) =

[
1 0

0 x2 + 1

]

⇒ RNF (A) =

[
0 −1
1 0

]
mA(x) = (x+ i) (x+ 1)

⇒ SNF (xI −A) =

[
1 0

0 (x+ i) (x+ 1)

]

⇒ RNF (A) =

[
0 −i
1 − (i+ 1)

]
mA(x) = (x+ i) (x− 1)

⇒ SNF (xI −A) =

[
1 0

0 (x+ i) (x− 1)

]

⇒ RNF (A) =

[
0 i

1 1− i

]
mA(x) = (x− i) (x+ 1)

⇒ SNF (xI −A) =

[
1 0

0 (x− i) (x+ 1)

]

⇒ RNF (A) =

[
0 i

1 i− 1

]
mA(x) = (x− i) (x− 1)

⇒ SNF (xI −A) =

[
1 0

0 (x− i) (x− 1)

]

⇒ RNF (A) =

[
0 −i
1 i+ 1

]
.

In summary, there is 1 similarity class of 2 × 2 matrices with precise order 4 over Q. That is[
0 −1
1 0

]
. There are 7 similarity classes of 2× 2 matrices with precise order 4 over C. They

are

[
−i 0

0 −i

]
,

[
i 0

0 i

]
,

[
0 −1
1 0

]
,

[
0 −i
1 − (i+ 1)

]
,

[
0 i

1 1− i

]
,

[
0 i

1 i− 1

]
, and[

0 −i
1 i+ 1

]
.
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