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Dummit & Foote, Exercises 13.2

Question 19 Let K be an extension of F of degree n.

a. For any α ∈ K prove that α acting by the left multiplication on K is an F -linear transfor-

mation of K.

Answer: First we view K as a vector space of F since K is an extension of F . Now we want to

evaluate the map of left multiplication by a fixed element α ∈ K, which we shall call fa :

K → K, defined by fa (k) = αk, where k ∈ K. According to the definition of being a linear

transformation, we want to show fa (x+ y) = fa (x) + fa (y), and fa (cx) = cfa (x)where

x, y ∈ K and c ∈ F .

fa (x+ y) = α (x+ y)

= αx+ αy

= fa (x) + fa (y) .

fa (c · x) = α · cx

= c · αx

= c · fa (x) .

We’ve shown that α ∈ K acting by the left multiplication on K is an F -linear transforma-

tion. This is done by viewing K as a vector space of F and proving the properties of being

a linear transformation.

b. Prove that K is isomorphic to a subfield of the ring of n× n matrices over F , so the ring of

n× n matrices over F contains an isomorphic copy of every extension of F of degree≤ n.

Answer: In the previous question, we’ve shown that for any α ∈ K, the map fa is a F -linear trans-

formation. So the following map is well defined.

ϕ : K →Mn (F )

ϕ : k → fk.
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We can show that this map is a ring homomorphism from the field K to the ring Mn (F ).

We will first show that the map ϕ preserves the addition operation.

ϕ (k1 + k2) = fk1+k2

fk1+k2
(x) = (k1 + k2) · x

= k1x+ k2x

= fk1
(x) + fk2

(x)

= ϕ (k1) + ϕ (k2)

⇒ ϕ (k1 + k2) = ϕ (k1) + ϕ (k2) .

We now show that the mapϕ preserves the multiplication operation, which is the function

composition for fk and the matrix multiplication in Mn (F ).

ϕ (k1 · k2) = fk1·k2

fk1·k2
(x) = (k1 · k2) · x

= k1k2x

= fk1
(k2x)

= fk1
(fk2

(x))

= ϕ (k1) · ϕ (k2)

⇒ ϕ (k1 · k2) = ϕ (k1) · ϕ (k2) .

We can show this ring homomorphism is injective, and hence K ∼= img (ϕ) ≤Mn (F ). Let

fk1
= fk2

, we want to show this happens only when k1 = k2.

fk1 = fk2

⇒ k1x = k2x

⇒ k1x− k2x = 0

⇒ (k1 − k2)x = 0, ∀x ∈ K

⇒ k1 − k2 = 0, ∵ K is an integral domain

⇒ k1 = k2.

Therefore, ϕ is an injective map, and K ∼= img (ϕ) ≤ Mn (F ). Hence Mn (F ) contains an

isomorphic copy of K, which is an extension of F with degree n.

Let’s have K ′ be an extension field of F , and [K ′ : F ] = m < n. From the previous conclu-

sion, we know that Mm (F ) contains an isomorphic copy of K ′. Since Mm (F )is a subring

of Mn (F ), Mn (F ) also contains an isomorphic copy of K ′. Therefore Mn (F ) contains an

isomorphic copy of every extension of F with degree≤ n.
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Question 20-1 Show that if the matrix of the linear transformation “multiplication by α” considered in

the previous exercise is A then α is a root of the characteristic polynomial for A.

Answer: As shown previously, we can view the “multiplication by α” as a F -linear transformation,

A ∈Mn (F ). In other words, we have the following relation, where α, k ∈ K and α is fixed.

A · k = α · k.

It is obvious that α is an eigenvalue of A, which is a root of A’s characteristic polynomial

by definition. So α is a root of the characteristic polynomial of A.

Question 20-2 This gives an effective procedure for determining an equation of degree n. Use this pro-

cedure to obtain the monic polynomial of degree 3 satisfied by 3
√
2 and by 1 + 3

√
2 + 3
√
4.

Answer: We will first determine the monic polynomial of degree 3 satisfied by 3
√
2. Basically, we

need to determine the F -linear transformationA that corresponds to 3
√
2, and the charac-

teristic polynomial of A is the monic polynomial satisfied by 3
√
2. Let’s consider a basis of

K as a vector space over F . One such basis is
{
1, 3
√
2, 3
√
4
}
. A typical element in K can be

expressed as a vector over F .

k ∈ K

k = a · 1 + b · 3
√
2 + c · 3

√
4

k =


a

b

c

 , a, b, c ∈ F.

Plug this information in A · k = α · k, we can solve A.

A ·


a

b

c

 =
3
√
2 ·


a

b

c


=

3
√
2 ·
(
a · 1 + b · 3

√
2 + c · 3

√
4
)

= a · 3
√
2 + b · 3

√
4 + c · 2

⇒ A =


0 0 2

1 0 0

0 1 0

 .
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Let’s verify this solutions of A.

A ·


a

b

c

 =


0 0 2

1 0 0

0 1 0

 ·

a

b

c



=


2c

a

b


= 2c · 1 + a · 3

√
2 + b · 3

√
4

=
3
√
2 ·


a

b

c

 .

Now we find the characteristic polynomial of A.

det

x · I3 −


0 0 2

1 0 0

0 1 0


 = det




x 0 −2
−1 x 0

0 −1 x




= x · det

([
x 0

−1 x

])
− 2 · det

([
−1 x

0 −1

])
= x3 − 2.

The monic polynomial of degree 3 satisfied by 3
√
2 is x3 − 2.

Similarly, for 1 + 3
√
2 + 3
√
4, we first determine a basis of K as a vector space over F . One

such basis is
{
1, 3
√
2, 3
√
4
}

. Plug this information in A · k = α · k, we can solve A.

A ·


a

b

c

 =
(
1 +

3
√
2 +

3
√
4
)
·


a

b

c


=

(
1 +

3
√
2 +

3
√
4
)
·
(
a · 1 + b · 3

√
2 + c · 3

√
4
)

= (a+ 2b+ 2c) + (a+ b+ 2c) · 3
√
2 + (a+ b+ c) · 3

√
4

⇒ A =


1 2 2

1 1 2

1 1 1

 .

Let’s verify this solutions of A.

A ·


a

b

c

 =


1 2 2

1 1 2

1 1 1

 ·

a

b

c
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=


a+ 2b+ 2c

a+ b+ 2c

a+ b+ c


= (a+ 2b+ 2c) · 1 + (a+ b+ 2c) · 3

√
2 + (a+ b+ c) · 3

√
4

=
(
1 +

3
√
2 +

3
√
4
)
·


a

b

c

 .

Now we find the characteristic polynomial of A.

det

x · I3 −


1 2 2

1 1 2

1 1 1


 = det



x− 1 −2 −2
−1 x− 1 −2
−1 −1 x− 1




= (x− 1) · det

([
x− 1 −2
−1 x− 1

])
+ 2 · det

([
−1 −2
−1 x− 1

])

−2 · det

([
−1 x− 1

−1 −1

])
= x3 − 3x2 − 3x− 1.

The monic polynomial of degree 3 satisfied by 1 + 3
√
2 + 3
√
4 is x3 − 3x2 − 3x− 1.

Question 21-1 Let K = Q
(√

D
)

for some squrefree integer D. Let α = a+ b
√
D be an element of K. Use

the basis,
{
1,
√
D
}

for K as a vector space over Q and show that the matrix of the linear

transformation “multiplication by α” on K considered in the previous exercises has the

matrix

[
a bD

b a

]
.

Answer: We will first show that the matrix of the linear transformation “multiplication by α” on K

considered in the previous exercises has the matrix

[
a bD

b a

]
. We use the given basis{

1,
√
D
}

to express a typical element in K = Q
(√

D
)

.

k ∈ K

k = x · 1 + y ·
√
D

k =

[
x

y

]
, a, b ∈ Q.
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Plug this information in A · k = α · k, we can solve A.

A ·

[
x

y

]
= α ·

[
x

y

]
=

(
a · 1 + b ·

√
D
)
·
(
x · 1 + y ·

√
D
)

= (ax+ byD) + (ay + bx)
√
D

⇒ A =

[
a bD

b a

]
.

Question 21-2 Prove directly that the map a+ b
√
D 7→

[
a bD

b a

]
is an isomorphism of the field K with

a subfield of the ring of 2× 2 matrices with coefficients in Q.

Answer: We will first prove the map ϕ : K →M2 (Q) defined by ϕ : a+ b
√
D 7→

[
a bD

b a

]
is a ring

homomorphism. We first verify that ϕ preserves the addition operation.

ϕ
((
a+ b

√
D
)
+
(
c+ d

√
D
))

= ϕ
(
(a+ c) + (b+ d)

√
D
)

=

[
a+ c (b+ d)D

b+ d a+ c

]

ϕ
(
a+ b

√
D
)
+ ϕ

(
c+ d

√
D
)

=

[
a bD

b a

]
+

[
c dD

d c

]

=

[
a+ c (b+ d)D

b+ d a+ c

]
⇒ ϕ

((
a+ b

√
D
)
+
(
c+ d

√
D
))

= ϕ
(
a+ b

√
D
)
+ ϕ

(
c+ d

√
D
)
.

We now verify that ϕ preserves the multiplication operation.

ϕ
((
a+ b

√
D
)
·
(
c+ d

√
D
))

= ϕ
(
(ac+ bdD) + (ad+ bc)

√
D
)

=

[
ac+ bdD (ad+ bc)D

ad+ bc ac+ bdD

]

ϕ
(
a+ b

√
D
)
· ϕ
(
c+ d

√
D
)

=

[
a bD

b a

]
·

[
c dD

d c

]

=

[
ac+ bdD (ad+ bc)D

ad+ bc ac+ bdD

]
⇒ ϕ

((
a+ b

√
D
)
·
(
c+ d

√
D
))

= ϕ
(
a+ b

√
D
)
· ϕ
(
c+ d

√
D
)
.
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So we’ve shown that ϕ is a ring homomorphism. We now show that ϕ is injective.[
a1 b1D

b1 a1

]
=

[
a2 b2D

b2 a2

]
⇒ a1 = a2, b1 = b2

⇒ a1 + b1
√
D = a2 + b2

√
D.

Therefore, ϕ is an injective map, and K ∼= img (ϕ) ≤ M2 (Q). Hence K is isomorphic to a

subfield of M2 (Q).
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