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Question1 If pis aretraction of A onto B, then p |g, p restricted to B, is the identity on B.

Answer: Ahomomorphism p : A — Aisaretractionif pop = p. We call B aretract of A ifimg(p) = B.
It is clear that B is a subalgebra of A4, since B = img(p) C A. Now we construct the map p |g

by taking p and restrict it to B,

plB : B— B.

We will first prove that this map is a surjective. In other words, for any b € B, we want to
show there exist b’ € B, such that p(d’) = b.

B =img(p|a)
VoeB,Ja€ A, pla) =0
p(a)=p(p(a))=p¥)
Vbe B, I € B, p(t') =b.

Now we will show that it is also injective. For any by, by € B, p(b1) = p (b2), we want to show
that b1 = bg.

p |B issurjective

WY, by, p(0y) = b, p(bh) = b
= bi=p(b1)=p(p())) =p(b1)

by = p(b3) = p(p (b)) = p(b2)

p(b1) = p(b2)

by = by.

p
p

At this point, we've shown that p |5: B — B is an isomorphism, and hence automorphism
from B to itself. During the proof of injectivity, we've shown that this is an identity map.

b=p)=p(p®))=p®).



Question2 Prove the following are equivalent for an algebra P in a variety V:

Answer:

1. P is projective.

2. If f: A — P isan epimorphism then there is a homomorphism g : P — A so that

fg () = x. Note this forces g to be a monomorphism.

3. Pisisomorphic to a retract of a free algebra in V.

We will first show property 1 implies property 2. An algebra P is projective if for algebra M, N €

V, there exist an epimorphism f : M — N and ahomomorphism % : P — N, then there exist
ahomomorphismg: P - M withh = fog.

P
9/
M —-» N

f

Let M = Aand N = P, in property 2, we have f : A — P. And we can easily construct
a homomorphism from P — P, the identity map, idp. So, we've obtained the following

relation:

P
\Lidp
A —» P
f
According to property 1 that P is projective, we can conclude that there exist a homomor-

phism g : P — A. So the following diagram commutes.

P
vy L
A — P

f

Now, by these homomorphisms, we have f o g = idp. In other words, f o g(z) = z. We've

proved property 2 giving property 1.

Now we will show property 2 implies property 3. Every module P is the quotient of a free

module, e.g., the free module, F, on the set of elements in P. So there is always an exact
sequence 0 — kery — F 5 P — 0. According to property 2, we know there is a homomor-
phismg: P — Fand ¢ o g = idp.

According to proposition 25 of Dummit & Foot, a short exact sequence, 0 - A — B 5o
0, is split if and only if there exist a homomorphism p : C — B such that ¢ o u = idc. Hence,
0 — kerp — F — P — 0is split. Therefore, 7 = keryp @ P.



We also have P = 1 @ P. We can construct a homomorphism, 7 : kero @ P — 1 @& P with
7(k,p) = (1,p), Yk € kerp. Showing with a diagram it looks like the following.

P 1e P
1/l e 9 Qe
F o= P keroP — 1&P

With this homomorphism, we can see that kery @ P is a retraction, and 1 & P is its retract.

7 (7 (k,p)) =7 (1,p)
7 (k,p) = (1,p) =7 (1,p)
(m (k,p)) =7 (k,p)

= TOTM=T.

= T

So P =~ 1® P isaretract of F & kero @ P with m o m = m. We've proved property 3 giving
property 2.

Now we need to show property 3 implies property 1. In other words, given P is isomorphic to

aretract of a free algebra F in V, we want to show that if there is an epimorphisma : M - N

and a homomorphism 5 : P — N then there exist a homomorphism~: P — M.

We start with the following relationship, where = : ¥ — P, P is theretractof 7, o« : M —» N
andg: P — N

kerp@o P=F N
iﬁ
M 5 N

According to the universal mapping property, there is a unique homomorphism § : 7 — M.

So we have the following diagram commutes, « 0§ = fo7

kero@P=F 5 P
oy 1P
M 5 N

Let’s defineamapy: P — M by~ (z) =6 ((0,x)), where (0, z) € kerp @ P.
kero@ P = F 5P

51 VA
M 5 N



aoy(z) =aod((0,2)) =pBom((0,2)) = f(z)

= aoy=0.

Therefore we've shown there exist a homomorphism v : P — M and hence P is projective.

P
’Y‘/LB
M 5 N

At this point, we've shown these three properties are equivalent.

propertiy 1

e hN
propertiy 3 — propertiy 2

Question3 Let R be aring and assume now that V is the variety of all R-modules.

a. Show that if A is and B are R-modules and if p : A — B is a retraction, then A has a submod-
ule C' such that A = B¢ C and p(b,c) = b.

Answer: Let’s have C' = kerp and construct the following sequence by defining ¢ : kerp — A with
o(x) =x,and p: A — B. We will show that this sequence is a short exact sequence.

0— kerp3 AL B—0.

o0 : kerp — Aisinjective by definition. p : A — B is surjective since B = imgp. For any b € B
there exist p(a) = b. We also have imgp = kerp since p is constructed in such a way. Hence
we've shown that the above sequence is a short exact sequence.

As we've proved in Question I, If p is a retraction of A onto B, then p restricted to B is the
identity map on B. Hence, 3p' : B — A, with p’ (b) = b. Now, we have the following relation.

pop (b)=p(b)=0b
= pop (b) =idp.

According to proposition 25 of Dummit & Foot, a short exact sequence, 0 - X — Y %7
0, is splitif and only if there exist a homomorphism p : Z — Y such that ¢popu = idz. So we've
shown that 0 — kerp % A % B — 0is split, A = B @ kerp, p corresponds to an identity map

on B, and hence is the nature projection with p (b, c) = b.



b. Use this to show that an R-module is projective iff it is a direct summand of a free R-module.

Answer: According to Question 2, P is isomorphic to a retract of a free algebra in V if and only if P
is projective. If P is isomorphic to a retract of a free R-module F, then according to the
conclusion of part a of this question, P is a direct summand of F. So, we've shown the only
if direction.

If P is a direct summand of a free R-module F, then we have epimorphism ¢ : 7 — P
defined as the nature projection map, ¢ ((p,1,---,1)) = p. We also have a monomorphism
¢: P»— Fdefinedasy(p) = (p,1,---,1).

P Pele- -l
e e v
F Tzﬁ» P POoQi® - ®Qn ;7 Poele- -l

On theright-side diagram, we define ¢’ : P®&Q1®- - -©Q,, — P®1®---®las¢’ ((p,1,---,1)) =
(p,1,---,1),and ¢’ : P11 --- &1 >PP@Q1 & ---®Qras¢ ((p,1,---,1)) = (p,1,---,1),
clearly, ¢’ o ¢/ = ¢’ and ¢’ |pg1g...91= id.

Hence, P®1® ---® lisaretractof P Q1 & --- ® @Q,, so P is a retract of . This is
property 3 in Question 2, and it implies P is projective. Therefore we've shown that the if

direction.
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Question 1 In this problem, we will show Q ®7 Q = Q as a Z-module.

a. Showthaty: Q®zQ — Qgiven by ¢ (r ®z s) = rs for r and s € Q is a homomorphism. To
do this we need to find the appropriate middle linear map.

Answer: Let'sdefineamap ¢ : Q x Q —» Q ®z Q by ¢ (r, s) = r ®z s. This map is a middle linear map.
It directly follows the definition of the tensor product.

t(rn,s) =rn®z s =r®zns = 1(r,ns)
t(r1+re,s)=(r1+mr)®@zs=r1Q@zs+raQ®zs=1(r1,s) +1(re,s)

t(rys1+82)=rQz(s1+82) =7z 81 +rQzsa=1(r,81)+(r,s2).



Let’s also define ¢ : Q x Q@ — Q by ¢ (r, s) = rs. We can show this map is also a middle linear
map.

¢ (rn,s) = rns = ¢ (r,ns)
d(r1+re,8)=(r1+r3)-s=r1-s+ro-s=0¢(r1,s)+ ¢(re,s)
¢(rysi+s2)=r-(s1+82)=r-51+71-52=0(r,51) +P(r,52).

According to Theorem 10 on Dummit & Foot, if R is a ring with 1, M is a right R-module, N
is a left R-module, L is an abelian group, anda« : M x N - M ®g N, : M x N — L are
middle linear maps, then there exist a unique homomorphism v : M ®z N — L, such that
~v o a = 3. The following diagram commutes.

MxN 5% M@rN
/3\ e
L

Zis aring with 1, Q is and a left and a right Z-module, and Q is an abelian group. And we've
shown:: Q xQ - Q®zQand ¢ : Q x Q — Q are middle linear maps. Also, p o ¢ (r,s) =
v(r®zs) = rs = ¢(r,s). So we conclude that ¢ defined in this problem is the unique
homomorphism from Q ®z Q to Q

QxQ 4 Q&zQ
¢\ 1%
Q

b. Showthatifrands € Qthenr ®z s =1®gzrs.

Answer: According to the definition of tensor product, we have mr @ g n = m ®g rn where r € R.

r
TRy 8= <1> ®z s, where, 1,79 € Z
T2

= r®zs= <T1> Rz (TZS> = <T2> Rz (m'8> =1®zrs.
T2 ] 2 2

c. Showthatr — 1 ®z r is a homomorphism and is the inverse of .

Answer: To show the given map, ¢’ : Q = Q ®z Q, with ¢’ : r = 1 ®z r, is a homomorphism, we need
toshow ¢’ (r +s) = ¢’ (r) + ¢’ (s) and ¢’ (rs) = ¢’ (r) ¢’ (s) for Vr, s € Q.

O (r+s)=1®z(r+s)=1@zr+1®z5=¢ (r)+¢ (s)
¢ (rs) =1@zrs =(1@z7)(1®z5) = ¢ (r)¢ (s).



Question 2

Answer:

Now we show that ¢’ is the inverse of (.

poyp'(r=p(lzr)=r
Pop(rezs)=¢ (rs)=1Q0zrs=1rQys

= poyp =¢ op=idg

At this point, we've shown, there is surjective homomorphism ¢ : Q ®; Q — Q, a surjective
homomorphism ¢’ : Q - Q ®7 Q since Vr ®z s € Q ®z Q, Irs € Q, with ¢’ (rs) = 1 ®z rs =
r®z s, and g o ¢’ =idg. So, Q ®z Q = Q.

Suppose R is commutative and I and J are ideals of R. Show that

R/I®R/J=R/(IV.J).

Iv Jisthe ideal generated by I and J. It is often written 7 + J. For the map R/I ® R/J —
R/ (IV J) we need to make a middle linear map R/I x R/J — R/(IV J). For the other
direction map R — R/I ® R/J by r — r(1® 1) and show that I v J is contained in the
kernel.

Let’s constructamap, o : R/IxR/J — R/IQR/J,defininga ((r1 +1),(re+J)) = (1 +1)®
(ro + J). This map is a middle linear map. This is directly following the definition of the
tensor product.

a((rm+I)-r(ra+J) = (m+D)-r@rs+J)
= (m+D@r (re+J)
= a((ri+I),r-(ra+J)).
a(((rm+r)+1D),(rs+J) = (m+r)+D)(@s+J)
= ((m+D+(r2+1)®(rs+J)
= (m+DH@@rs+J)+ (ro+ 1)@ (rs+J)
= a((m+ID),(rs+D)+a((ra+1),(rs+1))
a((ri+1),(ra+r3)+J) = (Mm+D)Q((ra+713)+J)
= (m+D)((re+J)+ (rs+J))
M+ e+ )+ (m+1)@(rs+J)
= a((ri+ID),(re+ D) +a((r1+1),(rs+1)).

Let’s also construct a map, 8 : R/I x R/J — R/(IV J), defining g ((r1 + 1), (ra +J)) =



rire + I V J. We can show this map is also a middle linear map.

Blri+Dr (ra+J) = B((rir+1),(r2+J))
= rrro+1IVJ
= B((ri+1),(rer+J))
= B+ D+ )

B(((ri+r2)+1),(r3+J) = (r1i+r2)7s

= TiT3 +T2r3

= B(ri+1D),(rs+J))+B((ra+1),(rs +J))
Blri+J), ((ra+rs) +1)) = r1(r2a+rs)

= 7rireg + 17173

= B +1D),(r2+ )+ B((r1+1),(rs+J)).

According to Theorem 10in Dummit & Foote, there exist a homomorphism ¢ : R/T® R/J —
R/ (IV J),such that 3 = ¢ o . The following diagram commutes.

R/IxR/J % R/I®rR/J
B N y
R/(IVJ)

We can derive the homomorphism ¢ and show that ¢ is surjective.

B((ri+1),(ra+J)) = mre+1IVJ
a((rm=+I),(re+J)) = (Mm+D)(2+J)
>¢:(m+D)@r2+J) = rire+1IVJ
SV(r+IVI)ER/(IVI) 3 (+D®(r+J)eR/TorR/]
)

P+ @(r+J) r+1IVJ.

For the other direction, let’s construct a map ¢ : R — R/I ® R/J by defining ¢ : r —

r (1g/r ® 1g, ). This is a homomorphism.

p(r)+e(rz) = n+Hed+J)+r(l+He(d+])
= (m+r)((1+He1+J)
= @(r1+7r2)
e(r)e(r) = (M+HeA+J)(r+1)@(1+J))

= (m+Dre+DH @A +J)(1+J))

= p(rr2).



We can show that I Vv J is in the kernel of ¢.

Vi+jelvJ wherei e [ j € J
=p(i+j) = (+H)(A+D)@(1+J))
= i(+Hed+J)+j(A+D)e1+]))
= ((+DHA+I))+((1+DH G +J))
= IQ+0)+((Q1+D)®J)
= Orsror/7 + Or/10R) T

= Ogr/ror/J-

So we have ahomomorphism ¢’ : R/ (IV J) — R/I®R/Jwith¢' : r+IVJ — 7 (11 @ 1g, ;).
We can show that ¢ is surjective. In other words, any tensor in R/I ® R/J can be written as

a scalar multiple of 15,7 ® 1/ ;.

(m+DHe@2+J) = (mA+1)@(r2(1+J))
= ¢ (rmre+1VJ)

=V(rm+)@(@rs+J) € R/IIQR/J
I(rire+IVJI)ER/(IVJI) with ¢ (riro+IVJ)=(r1+1)@(ra+J).

In fact ¢ and ¢’ are inverses.

Pl (r+IVvI) = ¢(r(1+D)e(1+))
= ¢o(r+De(1+J))
= r4+1IVJ
= ¢o¢ =idp/rv)

(D +D)@ra+J)) = ¢ (rra+I1V.J)
= (m+DH@((rs+J)

= ¢ odp=1idg/ior/-

We've shown there exist two inverse surjective homomorphisms between R/ (I Vv J) and
R/I®R/J,soR/I®QR/J=R/(IVJ).

Question3 Using the previous problem and the fundamental theorem of abelian groups and that ten-
sor products distribute over direct sum, describe A ®; B, where A and B are finite abelian
groups. Alternatively, find A ®; B, where A = Z/4Z & Z/16Z and B = Z/8Z & Z/27Z.



Answer:

The fundamental theorem of finite abelian groups states that every finite abelian group G

can be expressed as the direct sum of cyclic subgroups of prime-power order. A and B are

already expressed as the direct sum of cyclic subgroups of prime-power order.

A®zB = (ZJAZ&Z/16Z) Rz (Z/8T & 7/27Z).

According to Theorem 17 on Dummit & Foote, tensor product distribute over direct sums.
If M, M' are right R-modules and N, N’ are left R-modules, then there are group isomor-
phisms, (M ®@M') @g N 2 (M @rN)® (M ®@g N)and M g (N®N') 2 (M ®@rN) ®
(M ®r N'). So we have the following conversion.

ARz B = (ZJAZ®T/16Z) @y (Z/8Z & 7,/277)
(Z/AZ 4 Z/8Z) ® (/AL ©7, L./2TZ) & (Z/16Z ®7 Z/8Z) & (Z/16Z @7, L/27Z) .

We've shown in the previous problem that R/I ® R/J = R/ (I V J) where R is commutative,
I, J are ideals of R. For Z/aZ and Z/bZ, we have R = Z, which is a commutative ring,
I=aZ={icZ:i=a-nn=0012--LJ=bZ={jcZ:j=b-m m=0,1,2---1}
We can show that I \V J here is the ideal generated by the greatest common denominator of

aand b.

aZN VL = {z:x=i+j,i€l, jeJ}
= aZ V bZ

{z:z=a-n+b-m, mnecZ}
Zis a PID.
aZ = (a), bZ = (b), aZ V VZ = (gcd (a, b)) .

According to the conclusion from the previous problem we have the following relations.

ZJAZ ®7,Z/8Z = 7./ (ged (4,8)) = Z/AZ

ZJAL @7, 7)277. = 7] (ged (4,27)) = Z)Z = {0}
7J167 7, 7./87. = 7./ (ged (16,8)) = Z/87.

7.)167. @7 7,)277 = 7./ (ged (16,27)) = Z)Z = {0}

= A®yB = (ZJAL®y7/87)® (ZJAZ @7 7)2TZ) & (Z/167 ®7 7,/8T) & (Z/16Z @y, Z./277)
= ZJAZ & Z/8L.
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Question4 Let B; and B be submodules of the left R-module A. Let D be a flat right R-module. Show,

Answer:

D®R(Bl\/B2) = (D®RB1)\/(D®RB2)
D®r(BiNBy) = (DerB1)N(D®g Bs).

proving the map B — D ®pg B is alattice homomorphism of Sub (4) — Sub (D ®p A). Hint,
the hardest part is proving the inclusion (D ®g B1) N (D ®g B2) € D ®g (B1 N Bs). To see
this first note B,/ (B1 N B2) = (B V By) /B2. Hence we have the short exact sequence,

0—)BlmB2—>Blﬁ)(Bl\/Bg)/BQ—)O.

and hence the following sequence is exact, so ker (1 ®r ¢) = D ®g (B N By). Use this to
show (D ®g B1) N (D ®g B2) € D ®g (B1 N Ba).

0= D®rBINBy— D&p By 5° D@y (B V By) /By — 0.

First, we will prove D ®g (B1V Bs) = (D ®g B1) V (D ®g Bs). We construct the following
sequence, and define id : By — B; V By byid : by — b;.

O—>Blﬁ>Bl\/ng>(Bl\/Bg)/Bl—>0.

We know that 0 — ker (¢) — X 4 img (¢) — 0, where ¢ is a homomorphism, always forms
a short exact sequence. The the sequence above, 0 — B; 4 BVB, S (B1V Bsg) /By — 0is

a short exact sequence. D is flat, so we have the following short exact sequence.

0 D®r B "B Dog (B VB) 'S Dog (B V Bs) /By) — 0.

Sine the map 1 ®p id is just the identity map, and it is injective, we have D ®p B; is a sub-
module contained in D ® (B; V Bz). So we have the following relations and we can derive
(D®gr B1)V (D ®Rg By) < D®pg (B V Bs).

D ®r By < D®g(B1V By)

D®r By <D®pg(B1V By)
= di1®@rbi+dy®rby € D®R (B1V Ba),

where (d; ®g b1 + da @ bs) is a typical element in (D ®g B1) V (D ®g Bs)
= (D®rB1)V(D®rBy) <D®g(B1V Bs).

Now we've shown one direction. we can show the other direction by evaluating a typical
element from D ®g (B1 V Bs), d®g (b1 + by) where d € D, by € By, by € B,. According to the

11



properties of tensor products, we have the following relation.

d®@g (b1 +b2) = d®rb +d®g by
(D QR Bl) V (D QR Bg)
= D®gr(B1VB) <(D®rB1)V(D®gB1).

m

Combining these two conclusions, we have (D ® B1) V (D ®g B1) = D ®g (B1 V Ba).

Second, we will prove D @ (B; N Bg) = (D ®g B1) N (D ®g B2). We can easily show D ®@p
(B1 N By) < (D ®gr B1)N(D @k Bs) by evaluating a typical elementin D®g (B; N Ba), dQrb
whered € D,b € By,b € By

d®rb € D®rB;  -be B

d®rb € D®grBs b€ By
=d®rb € (D®gBi)N(D®g Bs)
=D®r(BiNBy) < (D®rB1)N(D Qg Bs).

To show the other direction, we first construct the following sequences. They are short exact
sequences, since 0 — ker (¢) — X LA img (¢) — 0, where ¢ is a homomorphism, always
forms a short exact sequence.
id
0= BiNB, 2 B A B/ (BiNBy) =0
B By/

idp.
0— B NBy = By 3 By/(BiNBy) =0

According to the second isomorphism theorem, B,/ (B; N B2) & (By V By) /Ba. So, we con-

vert the sequences above.

id 4
O%BlﬂBQ jl Bl#(Bl\/BQ)/BQ*}O

/

B
id
0— B1NBy —B>2 BQ%(Bl\/BQ)/Bl—>O

Since D is flat, we have the following short exact sequences.

1 id 4

0 DR (BINBy) 5 DerBi 3" D@n((BiVBy)/Bs) =0
1 id !

0= Dor(BiNBy) 5" Doy By "8 Dop (B, V By) /By) — 0.

According to the definition of the short exact sequence, img (1 ®g id) = ker (1 ®g ') for

12



both sequences.

1®gidp, : D®gr (B1NBs) = D Qg By

1®pgidp, : D®g (B1NBs) - D ®pg B
= img(1®ridp,) =img(1®ridp,) = D g (B1N By)
= ker(1®@prpB)=D®gr(BiNBsy).

Sine everything in D ® p B; maps to the kernel by 1®z 5, : D®g B2 - D®pg ((B1 V Bs) /B1),
with 1 ®g B} : d ®g by — d @ (by + By ), we have the following relation.

(D ®p Bs) N (D ®pg By) C ker (1®p 5}).

Sine everything in D ® p B, maps to the kernel by 1®z 51 : D®g B1 - D®pg ((B1 V Bs) /Bs),
with 1 ®g ] : d @ by — d @r (b + Bs), we have the following relation.

(D ®g By) N (D ®g By) C ker (1Q5 8).

Together, we've shown that (D ®g B1) N (D ®g Bz) is asubset of D ®p (B1 N Ba).

(D®g By) N (D &g By) Cker (1®g ) =D @g (B1 N By)
= (D@RBl)ﬁ(D@)RBg) CD®g (BlﬂBg).

Combining with the earlier results, we conclude that (D @ p B1)N(D ®g Bz) = DRr(B1 N Bs).

D®p (B1NBs) < (D®gB1)N(D®g Bs)
(D®g B1) N (D ®r B2) € D®g (B1 N By)
~ D@p(BinBy) = (DorB1)N (D &g Bs).
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