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Question 1 If ρ is a retraction of A onto B, then ρ |B , ρ restricted to B, is the identity on B.

Answer: A homomorphism ρ : A→ A is a retraction if ρ ◦ ρ = ρ. We callB a retract ofA if img(ρ) = B.

It is clear that B is a subalgebra of A, since B = img(ρ) ⊆ A. Now we construct the map ρ |B
by taking ρ and restrict it to B,

ρ |B : B → B.

We will first prove that this map is a surjective. In other words, for any b ∈ B, we want to

show there exist b′ ∈ B, such that ρ(b′) = b.

∵ B = img (ρ |A)

∴ ∀b ∈ B, ∃a ∈ A, ρ (a) = b

∵ ρ (a) = ρ (ρ (a)) = ρ (b′)

∴ ∀b ∈ B, ∃b′ ∈ B, ρ (b′) = b.

Now we will show that it is also injective. For any b1, b2 ∈ B, ρ (b1) = ρ (b2), we want to show

that b1 = b2.

∵ ρ |B is surjective

∴ ∃b′1, b′2, ρ (b′1) = b1, ρ (b
′
2) = b2

⇒ b1 = ρ (b′1) = ρ (ρ (b′1)) = ρ (b1)

b2 = ρ (b′2) = ρ (ρ (b′2)) = ρ (b2)

∵ ρ (b1) = ρ (b2)

∴ b1 = b2.

At this point, we’ve shown that ρ |B : B → B is an isomorphism, and hence automorphism

from B to itself. During the proof of injectivity, we’ve shown that this is an identity map.

b = ρ (b′) = ρ (ρ (b′)) = ρ (b) .
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Question 2 Prove the following are equivalent for an algebra P in a variety V :

1. P is projective.

2. If f : A � P is an epimorphism then there is a homomorphism g : P → A so that

fg (x) = x. Note this forces g to be a monomorphism.

3. P is isomorphic to a retract of a free algebra in V .

Answer: We will first show property 1 implies property 2. An algebraP is projective if for algebraM,N ∈
V , there exist an epimorphism f :M � N and a homomorphism h : P → N , then there exist

a homomorphism g : P →M with h = f ◦ g.

P
g ↙ ↓h

M �
f

N

Let M = A and N = P , in property 2, we have f : A � P . And we can easily construct

a homomorphism from P → P , the identity map, idP . So, we’ve obtained the following

relation:

P

↓idP

A �
f

P

According to property 1 that P is projective, we can conclude that there exist a homomor-

phism g : P → A. So the following diagram commutes.

P
g ↙ ↓idP

A �
f

P

Now, by these homomorphisms, we have f ◦ g = idP . In other words, f ◦ g(x) = x. We’ve

proved property 2 giving property 1.

Now we will show property 2 implies property 3. Every module P is the quotient of a free

module, e.g., the free module, F , on the set of elements in P . So there is always an exact

sequence 0 → kerϕ → F ϕ→ P → 0. According to property 2, we know there is a homomor-

phism g : P → F and ϕ ◦ g = idP .

According to proposition 25 of Dummit & Foot, a short exact sequence, 0 → A → B
φ→ C →

0, is split if and only if there exist a homomorphism µ : C → B such that φ ◦ µ = idC . Hence,

0→ kerϕ→ F → P → 0 is split. Therefore, F ∼= kerϕ⊕ P .
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We also have P ∼= 1 ⊕ P . We can construct a homomorphism, π : kerϕ ⊕ P → 1 ⊕ P with

π(k, p) = (1, p),∀k ∈ kerϕ. Showing with a diagram it looks like the following.

P
g ↙ ↓idP

F �
π

P

⇔
1⊕ P

g ↙ ↓idP

kerϕ⊕ P �
π

1⊕ P

With this homomorphism, we can see that kerϕ⊕ P is a retraction, and 1⊕ P is its retract.

∵ π (π (k, p)) = π (1, p)

π (k, p) = (1, p) = π (1, p)

⇒ π (π (k, p)) = π (k, p)

⇒ π ◦ π = π.

So P ∼= 1 ⊕ P is a retract of F ∼= kerϕ ⊕ P with π ◦ π = π. We’ve proved property 3 giving

property 2.

Now we need to show property 3 implies property 1. In other words, given P is isomorphic to

a retract of a free algebraF in V , we want to show that if there is an epimorphism α :M � N

and a homomorphism β : P → N then there exist a homomorphism γ : P →M .

We start with the following relationship, where π : F → P , P is the retract of F , α : M � N

and β : P → N

kerϕ⊕ P ∼= F
π
� P

↓β

M
α
� N

According to the universal mapping property, there is a unique homomorphism δ : F →M .

So we have the following diagram commutes, α ◦ δ = β ◦ π

kerϕ⊕ P ∼= F
π
� P

δ ↓ ↓β

M
α
� N

Let’s define a map γ : P →M by γ (x) = δ ((0, x)), where (0, x) ∈ kerϕ⊕ P .

kerϕ⊕ P ∼= F
π
� P

δ ↓ γ ↙ ↓β

M
α
� N
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α ◦ γ (x) = α ◦ δ ((0, x)) = β ◦ π ((0, x)) = β (x)

⇒ α ◦ γ = β.

Therefore we’ve shown there exist a homomorphism γ : P →M and hence P is projective.

P
γ ↙ ↓β

M
α
� N

At this point, we’ve shown these three properties are equivalent.

propertiy 1

↗ ↘
propertiy 3 ← propertiy 2

Question 3 Let R be a ring and assume now that V is the variety of all R-modules.

a. Show that ifA is andB areR-modules and if ρ : A→ B is a retraction, thenA has a submod-

ule C such that A = B ⊕ C and ρ(b, c) = b.

Answer: Let’s have C = kerρ and construct the following sequence by defining % : kerρ → A with

% (x) = x, and ρ : A→ B. We will show that this sequence is a short exact sequence.

0→ kerρ
%→ A

ρ→ B → 0.

% : kerρ→ A is injective by definition. ρ : A→ B is surjective since B = imgρ. For any b ∈ B
there exist ρ(a) = b. We also have img% = kerρ since % is constructed in such a way. Hence

we’ve shown that the above sequence is a short exact sequence.

As we’ve proved in Question 1, If ρ is a retraction of A onto B, then ρ restricted to B is the

identity map on B. Hence, ∃ρ′ : B → A, with ρ′ (b) = b. Now, we have the following relation.

ρ ◦ ρ′ (b) = ρ (b) = b

⇒ ρ ◦ ρ′ (b) = idB .

According to proposition 25 of Dummit & Foot, a short exact sequence, 0 → X → Y
φ→ Z →

0, is split if and only if there exist a homomorphism µ : Z → Y such that φ◦µ = idZ . So we’ve

shown that 0→ kerρ
%→ A

ρ→ B → 0 is split, A = B ⊕ kerρ, ρ corresponds to an identity map

on B, and hence is the nature projection with ρ (b, c) = b.
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b. Use this to show that anR-module is projective iff it is a direct summand of a freeR-module.

Answer: According to Question 2, P is isomorphic to a retract of a free algebra in V if and only if P

is projective. If P is isomorphic to a retract of a free R-module F , then according to the

conclusion of part a of this question, P is a direct summand of F . So, we’ve shown the only

if direction.

If P is a direct summand of a free R-module F , then we have epimorphism φ : F � P

defined as the nature projection map, φ ((p, 1, · · · , 1)) = p. We also have a monomorphism

ϕ : P � F defined as ϕ (p) = (p, 1, · · · , 1).

P
ϕ ↙ ↓id

F �
φ

P

⇔

P ⊕ 1⊕ · · · ⊕ 1
ϕ′ ↙ ↓id

P ⊕Q1 ⊕ · · · ⊕Qn �
φ′

P ⊕ 1⊕ · · · ⊕ 1

On the right-side diagram, we defineφ′ : P⊕Q1⊕· · ·⊕Qn → P⊕1⊕· · ·⊕1 asφ′ ((p, 1, · · · , 1)) =
(p, 1, · · · , 1), and ϕ′ : P ⊕ 1 ⊕ · · · ⊕ 1 → P ⊕Q1 ⊕ · · · ⊕Qn as ϕ′ ((p, 1, · · · , 1)) = (p, 1, · · · , 1),
clearly, φ′ ◦ φ′ = φ′ and φ′ |P⊕1⊕···⊕1= id.

φ′ ◦ φ′ ((p, 1, · · · , 1)) = φ′ (p, 1, · · · , 1)

φ′ ((p, 1, · · · , 1)) = (p, 1, · · · , 1) .

Hence, P ⊕ 1 ⊕ · · · ⊕ 1 is a retract of P ⊕ Q1 ⊕ · · · ⊕ Qn, so P is a retract of F . This is

property 3 in Question 2, and it implies P is projective. Therefore we’ve shown that the if

direction.

Class Notes, Exercises 3.21

Question 1 In this problem, we will show Q⊗Z Q ∼= Q as a Z-module.

a. Show that ϕ : Q ⊗Z Q → Q given by ϕ (r ⊗Z s) = rs for r and s ∈ Q is a homomorphism. To

do this we need to find the appropriate middle linear map.

Answer: Let’s define a map ι : Q × Q → Q ⊗Z Q by ι (r, s) = r ⊗Z s. This map is a middle linear map.

It directly follows the definition of the tensor product.

ι (rn, s) = rn⊗Z s = r ⊗Z ns = ι (r, ns)

ι (r1 + r2, s) = (r1 + r2)⊗Z s = r1 ⊗Z s+ r2 ⊗Z s = ι (r1, s) + ι (r2, s)

ι (r, s1 + s2) = r ⊗Z (s1 + s2) = r ⊗Z s1 + r ⊗Z s2 = ι (r, s1) + ι (r, s2) .
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Let’s also define φ : Q×Q→ Q by φ (r, s) = rs. We can show this map is also a middle linear

map.

φ (rn, s) = rns = φ (r, ns)

φ (r1 + r2, s) = (r1 + r2) · s = r1 · s+ r2 · s = φ (r1, s) + φ (r2, s)

φ (r, s1 + s2) = r · (s1 + s2) = r · s1 + r · s2 = φ (r, s1) + φ (r, s2) .

According to Theorem 10 on Dummit & Foot, if R is a ring with 1, M is a right R-module, N

is a left R-module, L is an abelian group, and α : M × N → M ⊗R N , β : M × N → L are

middle linear maps, then there exist a unique homomorphism γ : M ⊗R N → L, such that

γ ◦ α = β. The following diagram commutes.

M ×N α→ M ⊗R N
β ↘ ↓γ

L

Z is a ring with 1, Q is and a left and a right Z-module, and Q is an abelian group. And we’ve

shown ι : Q × Q → Q ⊗Z Q and φ : Q × Q → Q are middle linear maps. Also, ϕ ◦ ι (r, s) =

ϕ (r ⊗Z s) = rs = φ (r, s). So we conclude that ϕ defined in this problem is the unique

homomorphism from Q⊗Z Q to Q

Q×Q ι→ Q⊗Z Q
φ ↘ ↓ϕ

Q

b. Show that if r and s ∈ Q then r ⊗Z s = 1⊗Z rs.

Answer: According to the definition of tensor product, we have mr ⊗R n = m⊗R rn where r ∈ R.

r ⊗Z s =

(
r1
r2

)
⊗Z s, where, r1, r2 ∈ Z

⇒ r ⊗Z s =

(
r1
r2

)
⊗Z

(
r2
r2
· s
)

=

(
r2
r2

)
⊗Z

(
r1
r2
· s
)

= 1⊗Z rs.

c. Show that r 7→ 1⊗Z r is a homomorphism and is the inverse of ϕ.

Answer: To show the given map, ϕ′ : Q→ Q⊗Z Q, with ϕ′ : r 7→ 1⊗Z r, is a homomorphism, we need

to show ϕ′ (r + s) = ϕ′ (r) + ϕ′ (s) and ϕ′ (rs) = ϕ′ (r)ϕ′ (s) for ∀r, s ∈ Q.

ϕ′ (r + s) = 1⊗Z (r + s) = 1⊗Z r + 1⊗Z s = ϕ′ (r) + ϕ′ (s)

ϕ′ (rs) = 1⊗Z rs = (1⊗Z r) (1⊗Z s) = ϕ′ (r)ϕ′ (s) .
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Now we show that ϕ′ is the inverse of ϕ.

ϕ ◦ ϕ′ (r) = ϕ (1⊗Z r) = r

ϕ′ ◦ ϕ (r ⊗Z s) = ϕ′ (rs) = 1⊗Z rs = r ⊗Z s

⇒ ϕ ◦ ϕ′ = ϕ′ ◦ ϕ = idQ.

At this point, we’ve shown, there is surjective homomorphism ϕ : Q ⊗Z Q → Q, a surjective

homomorphism ϕ′ : Q → Q⊗Z Q since ∀r ⊗Z s ∈ Q⊗Z Q, ∃rs ∈ Q, with ϕ′ (rs) = 1⊗Z rs =

r ⊗Z s, and ϕ ◦ ϕ′ = idQ. So, Q⊗Z Q ∼= Q.

Question 2 Suppose R is commutative and I and J are ideals of R. Show that

R/I ⊗R/J ∼= R/ (I ∨ J) .

I ∨ J is the ideal generated by I and J . It is often written I + J . For the map R/I ⊗ R/J →
R/ (I ∨ J) we need to make a middle linear map R/I × R/J → R/ (I ∨ J). For the other

direction map R → R/I ⊗ R/J by r 7→ r (1⊗ 1) and show that I ∨ J is contained in the

kernel.

Answer: Let’s construct a map,α : R/I×R/J → R/I⊗R/J , definingα ((r1 + I) , (r2 + J)) = (r1 + I)⊗
(r2 + J). This map is a middle linear map. This is directly following the definition of the

tensor product.

α ((r1 + I) · r, (r2 + J)) = (r1 + I) · r ⊗ (r2 + J)

= (r1 + I)⊗ r · (r2 + J)

= α ((r1 + I) , r · (r2 + J)) .

α (((r1 + r2) + I) , (r3 + J)) = ((r1 + r2) + I)⊗ (r3 + J)

= ((r1 + I) + (r2 + I))⊗ (r3 + J)

= (r1 + I)⊗ (r3 + J) + (r2 + I)⊗ (r3 + J)

= α ((r1 + I) , (r3 + I)) + α ((r2 + I) , (r3 + I))

α ((r1 + I) , ((r2 + r3) + J)) = (r1 + I)⊗ ((r2 + r3) + J)

= (r1 + I)⊗ ((r2 + J) + (r3 + J))

= (r1 + I)⊗ (r2 + J) + (r1 + I)⊗ (r3 + J)

= α ((r1 + I) , (r2 + I)) + α ((r1 + I) , (r3 + I)) .

Let’s also construct a map, β : R/I × R/J → R/ (I ∨ J), defining β ((r1 + I) , (r2 + J)) =
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r1r2 + I ∨ J . We can show this map is also a middle linear map.

β ((r1 + I) r, (r2 + J)) = β ((r1r + I) , (r2 + J))

= r1rr2 + I ∨ J

= β ((r1 + I) , (r2r + J))

= β ((r1 + I) , r (r2 + J)) .

β (((r1 + r2) + I) , (r3 + J)) = (r1 + r2) r3

= r1r3 + r2r3

= β ((r1 + I) , (r3 + J)) + β ((r2 + I) , (r3 + J))

β ((r1 + J) , ((r2 + r3) + I)) = r1 (r2 + r3)

= r1r2 + r1r3

= β ((r1 + I) , (r2 + J)) + β ((r1 + I) , (r3 + J)) .

According to Theorem 10 in Dummit & Foote, there exist a homomorphism φ : R/I⊗R/J →
R/ (I ∨ J), such that β = φ ◦ α. The following diagram commutes.

R/I ×R/J α→ R/I ⊗R R/J
β ↘ ↓φ

R/ (I ∨ J)

We can derive the homomorphism φ and show that φ is surjective.

β ((r1 + I) , (r2 + J)) = r1r2 + I ∨ J

α ((r1 + I) , (r2 + J)) = (r1 + I)⊗ (r2 + J)

⇒ φ : (r1 + I)⊗ (r2 + J) 7→ r1r2 + I ∨ J

⇒ ∀ (r + I ∨ J) ∈ R/ (I ∨ J) ∃ (1 + I)⊗ (r + J) ∈ R/I ⊗R R/J

φ ((1 + I)⊗ (r + J)) = r + I ∨ J.

For the other direction, let’s construct a map ϕ : R → R/I ⊗ R/J by defining ϕ : r 7→
r
(
1R/I ⊗ 1R/J

)
. This is a homomorphism.

ϕ (r1) + ϕ (r2) = r1 ((1 + I)⊗ (1 + J)) + r2 ((1 + I)⊗ (1 + J))

= (r1 + r2) ((1 + I)⊗ (1 + J))

= ϕ (r1 + r2)

ϕ (r1)ϕ (r2) = ((r1 + I)⊗ (1 + J)) ((r2 + I)⊗ (1 + J))

= ((r1 + I) (r2 + I)⊗ (1 + J) (1 + J))

= r1r2 ((1 + I)⊗ (1 + J))

= ϕ (r1r2) .
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We can show that I ∨ J is in the kernel of ϕ.

∀i+ j ∈ I ∨ J where i ∈ I j ∈ J

⇒ ϕ (i+ j) = (i+ j) ((1 + I)⊗ (1 + J))

= i ((1 + I)⊗ (1 + J)) + j ((1 + I)⊗ (1 + J))

= ((i+ I)⊗ (1 + J)) + ((1 + I)⊗ (j + J))

= (I ⊗ (1 + J)) + ((1 + I)⊗ J)

= 0R/I⊗R/J + 0R/I⊗R/J

= 0R/I⊗R/J .

So we have a homomorphismϕ′ : R/ (I ∨ J)→ R/I⊗R/J withϕ′ : r+I∨J 7→ r
(
1R/I ⊗ 1R/J

)
.

We can show that ϕ′ is surjective. In other words, any tensor in R/I ⊗R/J can be written as

a scalar multiple of 1R/I ⊗ 1R/J .

(r1 + I)⊗ (r2 + J) = (r1 (1 + I))⊗ (r2 (1 + J))

= r1r2 ((1 + I)⊗ (1 + J))

= ϕ′ (r1r2 + I ∨ J)

⇒ ∀ (r1 + I)⊗ (r2 + J) ∈ R/I ⊗R/J

∃ (r1r2 + I ∨ J) ∈ R/ (I ∨ J) with ϕ′ (r1r2 + I ∨ J) = (r1 + I)⊗ (r2 + J) .

In fact φ and ϕ′ are inverses.

φ (ϕ′ (r + I ∨ J)) = φ (r ((1 + I)⊗ (1 + J)))

= φ ((r + I)⊗ (1 + J))

= r + I ∨ J

⇒ φ ◦ ϕ′ = idR/(I∨J)

ϕ′ (φ ((r1 + I)⊗ (r2 + J))) = ϕ′ (r1r2 + I ∨ J)

= (r1 + I)⊗ (r2 + J)

⇒ ϕ′ ◦ φ = idR/I⊗R/J .

We’ve shown there exist two inverse surjective homomorphisms between R/ (I ∨ J) and

R/I ⊗R/J , so R/I ⊗R/J ∼= R/ (I ∨ J).

Question 3 Using the previous problem and the fundamental theorem of abelian groups and that ten-

sor products distribute over direct sum, describe A ⊗Z B, where A and B are finite abelian

groups. Alternatively, find A⊗Z B, where A = Z/4Z⊕ Z/16Z and B = Z/8Z⊕ Z/27Z.
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Answer: The fundamental theorem of finite abelian groups states that every finite abelian group G

can be expressed as the direct sum of cyclic subgroups of prime-power order. A and B are

already expressed as the direct sum of cyclic subgroups of prime-power order.

A⊗Z B = (Z/4Z⊕ Z/16Z)⊗Z (Z/8Z⊕ Z/27Z) .

According to Theorem 17 on Dummit & Foote, tensor product distribute over direct sums.

If M, M ′ are right R-modules and N, N ′ are left R-modules, then there are group isomor-

phisms, (M ⊕M ′) ⊗R N ∼= (M ⊗R N) ⊕ (M ′ ⊗R N) and M ⊗R (N ⊕N ′) ∼= (M ⊗R N) ⊕
(M ⊗R N ′). So we have the following conversion.

A⊗Z B = (Z/4Z⊕ Z/16Z)⊗Z (Z/8Z⊕ Z/27Z)

= (Z/4Z⊗Z Z/8Z)⊕ (Z/4Z⊗Z Z/27Z)⊕ (Z/16Z⊗Z Z/8Z)⊕ (Z/16Z⊗Z Z/27Z) .

We’ve shown in the previous problem thatR/I ⊗R/J ∼= R/ (I ∨ J) whereR is commutative,

I, J are ideals of R. For Z/aZ and Z/bZ, we have R = Z, which is a commutative ring,

I = aZ = {i ∈ Z : i = a · n, n = 0, 1, 2, · · · }, J = bZ = {j ∈ Z : j = b ·m, m = 0, 1, 2, · · · }.
We can show that I ∨ J here is the ideal generated by the greatest common denominator of

a and b.

aZ ∨ bZ = {x : x = i+ j, i ∈ I, j ∈ J}

⇒ aZ ∨ bZ = {x : x = a · n+ b ·m, m, n ∈ Z}

∵ Z is a PID.

∴ aZ = (a) , bZ = (b) , aZ ∨ bZ = (gcd (a, b)) .

According to the conclusion from the previous problem we have the following relations.

Z/4Z⊗Z Z/8Z ∼= Z/ (gcd (4, 8)) = Z/4Z

Z/4Z⊗Z Z/27Z ∼= Z/ (gcd (4, 27)) = Z/Z = {0}

Z/16Z⊗Z Z/8Z ∼= Z/ (gcd (16, 8)) = Z/8Z

Z/16Z⊗Z Z/27Z ∼= Z/ (gcd (16, 27)) = Z/Z = {0}

⇒ A⊗Z B = (Z/4Z⊗Z Z/8Z)⊕ (Z/4Z⊗Z Z/27Z)⊕ (Z/16Z⊗Z Z/8Z)⊕ (Z/16Z⊗Z Z/27Z)

= Z/4Z⊕ Z/8Z.
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Question 4 Let B1 and B2 be submodules of the left R-module A. Let D be a flat right R-module. Show,

D ⊗R (B1 ∨B2) = (D ⊗R B1) ∨ (D ⊗R B2)

D ⊗R (B1 ∩B2) = (D ⊗R B1) ∩ (D ⊗R B2) .

proving the mapB 7→ D⊗RB is a lattice homomorphism of Sub (A)→ Sub (D ⊗R A). Hint,

the hardest part is proving the inclusion (D ⊗R B1) ∩ (D ⊗R B2) ⊆ D ⊗R (B1 ∩B2). To see

this first note B1/ (B1 ∩B2) ∼= (B1 ∨B2) /B2. Hence we have the short exact sequence,

0→ B1 ∩B2 → B1
ϕ→ (B1 ∨B2) /B2 → 0.

and hence the following sequence is exact, so ker (1⊗R ϕ) = D ⊗R (B1 ∩B2). Use this to

show (D ⊗R B1) ∩ (D ⊗R B2) ⊆ D ⊗R (B1 ∩B2).

0→ D ⊗R B1 ∩B2 → D ⊗R B1
1⊗Rϕ→ D ⊗R (B1 ∨B2) /B2 → 0.

Answer: First, we will prove D ⊗R (B1 ∨B2) = (D ⊗R B1) ∨ (D ⊗R B2). We construct the following

sequence, and define id : B1 → B1 ∨B2 by id : b1 7→ b1.

0→ B1
id→ B1 ∨B2

α→ (B1 ∨B2) /B1 → 0.

We know that 0 → ker (φ) → X
φ→ img (φ) → 0, where φ is a homomorphism, always forms

a short exact sequence. The the sequence above, 0→ B1
id→ B1 ∨B2

α→ (B1 ∨B2) /B1 → 0 is

a short exact sequence. D is flat, so we have the following short exact sequence.

0→ D ⊗R B1
1⊗Rid→ D ⊗R (B1 ∨B2)

1⊗Rα→ D ⊗R ((B1 ∨B2) /B1)→ 0.

Sine the map 1 ⊗R id is just the identity map, and it is injective, we have D ⊗R B1 is a sub-

module contained in D ⊗R (B1 ∨B2). So we have the following relations and we can derive

(D ⊗R B1) ∨ (D ⊗R B2) ≤ D ⊗R (B1 ∨B2).

D ⊗R B1 ≤ D ⊗R (B1 ∨B2)

D ⊗R B2 ≤ D ⊗R (B1 ∨B2)

⇒ d1 ⊗R b1 + d2 ⊗R b2 ∈ D ⊗R (B1 ∨B2) ,

where (d1 ⊗R b1 + d2 ⊗R b2) is a typical element in (D ⊗R B1) ∨ (D ⊗R B2)

⇒ (D ⊗R B1) ∨ (D ⊗R B2) ≤ D ⊗R (B1 ∨B2) .

Now we’ve shown one direction. we can show the other direction by evaluating a typical

element fromD⊗R (B1 ∨B2), d⊗R (b1 + b2) where d ∈ D, b1 ∈ B1, b2 ∈ B2. According to the
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properties of tensor products, we have the following relation.

d⊗R (b1 + b2) = d⊗R b1 + d⊗R b2

∈ (D ⊗R B1) ∨ (D ⊗R B2)

⇒ D ⊗R (B1 ∨B2) ≤ (D ⊗R B1) ∨ (D ⊗R B1) .

Combining these two conclusions, we have (D ⊗R B1) ∨ (D ⊗R B1) = D ⊗R (B1 ∨B2).

Second, we will prove D ⊗R (B1 ∩B2) = (D ⊗R B1) ∩ (D ⊗R B2). We can easily show D ⊗R
(B1 ∩B2) ≤ (D ⊗R B1)∩(D ⊗R B2) by evaluating a typical element inD⊗R (B1 ∩B2), d⊗R b
where d ∈ D, b ∈ B1, b ∈ B2

d⊗R b ∈ D ⊗R B1 ∵ b ∈ B1

d⊗R b ∈ D ⊗R B2 ∵ b ∈ B2

⇒ d⊗R b ∈ (D ⊗R B1) ∩ (D ⊗R B2)

⇒ D ⊗R (B1 ∩B2) ≤ (D ⊗R B1) ∩ (D ⊗R B2) .

To show the other direction, we first construct the following sequences. They are short exact

sequences, since 0 → ker (φ) → X
φ→ img (φ) → 0, where φ is a homomorphism, always

forms a short exact sequence.

0→ B1 ∩B2

idB1→ B1
β1→ B1/ (B1 ∩B2)→ 0

0→ B1 ∩B2

idB2→ B2
β2→ B2/ (B1 ∩B2)→ 0

According to the second isomorphism theorem, B1/ (B1 ∩B2) ∼= (B1 ∨B2) /B2. So, we con-

vert the sequences above.

0→ B1 ∩B2

idB1→ B1
β′
1→ (B1 ∨B2) /B2 → 0

0→ B1 ∩B2

idB2→ B2
β′
2→ (B1 ∨B2) /B1 → 0

Since D is flat, we have the following short exact sequences.

0→ D ⊗R (B1 ∩B2)
1⊗RidB1→ D ⊗R B1

1⊗Rβ
′
1→ D ⊗R ((B1 ∨B2) /B2)→ 0

0→ D ⊗R (B1 ∩B2)
1⊗RidB2→ D ⊗R B2

1⊗Rβ
′
2→ D ⊗R ((B1 ∨B2) /B1)→ 0.

According to the definition of the short exact sequence, img (1⊗R id) = ker (1⊗R β′) for
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both sequences.

1⊗R idB1
: D ⊗R (B1 ∩B2)→ D ⊗R B1

1⊗R idB2 : D ⊗R (B1 ∩B2)→ D ⊗R B2

⇒ img (1⊗R idB1) = img (1⊗R idB2) = D ⊗R (B1 ∩B2)

⇒ ker (1⊗R β′) = D ⊗R (B1 ∩B2) .

Sine everything inD⊗RB1 maps to the kernel by 1⊗R β′2 : D⊗RB2 → D⊗R ((B1 ∨B2) /B1),

with 1⊗R β′2 : d⊗R b2 7→ d⊗R (b2 +B1), we have the following relation.

(D ⊗R B2) ∩ (D ⊗R B1) ⊆ ker (1⊗R β′2) .

Sine everything inD⊗RB2 maps to the kernel by 1⊗R β′1 : D⊗RB1 → D⊗R ((B1 ∨B2) /B2),

with 1⊗R β′1 : d⊗R b1 7→ d⊗R (b1 +B2), we have the following relation.

(D ⊗R B1) ∩ (D ⊗R B2) ⊆ ker (1⊗R β′1) .

Together, we’ve shown that (D ⊗R B1) ∩ (D ⊗R B2) is a subset of D ⊗R (B1 ∩B2).

(D ⊗R B1) ∩ (D ⊗R B2) ⊆ ker (1⊗R β′1) = D ⊗R (B1 ∩B2)

⇒ (D ⊗R B1) ∩ (D ⊗R B2) ⊆ D ⊗R (B1 ∩B2) .

Combining with the earlier results, we conclude that (D ⊗R B1)∩(D ⊗R B2) = D⊗R(B1 ∩B2) .

∵ D ⊗R (B1 ∩B2) ≤ (D ⊗R B1) ∩ (D ⊗R B2)

(D ⊗R B1) ∩ (D ⊗R B2) ⊆ D ⊗R (B1 ∩B2)

⇒ D ⊗R (B1 ∩B2) = (D ⊗R B1) ∩ (D ⊗R B2) .
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