## TA: Jade Cheng ICS 241 Recitation Lecture Notes #14 December 04, 2009

## **Recitation #14**

| Question: | Find five                                               | e other valid ser    | sentences, besides those given in Exercise 1 [Chapter 12.1 Review] |               |             |                  |                  |                  |                 |
|-----------|---------------------------------------------------------|----------------------|--------------------------------------------------------------------|---------------|-------------|------------------|------------------|------------------|-----------------|
| Answer:   | There are of course a large number of possible answers. |                      |                                                                    |               |             |                  |                  |                  |                 |
|           | E.g. 1:                                                 | sentence             |                                                                    |               |             |                  |                  |                  |                 |
|           | =>                                                      | ( <u>noun phrase</u> | intransitiv                                                        | ve verb       | phrase      | e)               |                  |                  |                 |
|           | =>                                                      | (article             | adjective                                                          |               | noun)       |                  | <u>intransi</u>  | tive verb phr    | ase             |
|           | =>                                                      | <u>article</u>       | adjective                                                          |               | noun        |                  | (intrans         | itive verb       | <u>adverb</u> ) |
|           | =>                                                      | The                  | sleepy                                                             |               | hare        |                  | runs             |                  | quickly         |
|           | E.g. 2:                                                 | <u>sentence</u>      |                                                                    |               |             |                  |                  |                  |                 |
|           | =>                                                      | ( <u>noun phrase</u> | intransitiv                                                        | ve verb       | phrase      | e)               |                  |                  |                 |
|           | =>                                                      | (article             | adjective                                                          |               | noun)       |                  | <u>intransi</u>  | tive verb phr    | ase             |
|           | =>                                                      | article              | <u>adjective</u>                                                   |               | <u>noun</u> |                  | ( <u>intrans</u> | itive verb       | <u>adverb</u> ) |
|           | =>                                                      | The                  | happy                                                              |               | hare        |                  | runs             |                  | slowly          |
|           | E.g. 3:                                                 | <u>sentence</u>      |                                                                    |               |             |                  |                  |                  |                 |
|           | =>                                                      | ( <u>noun phrase</u> | transitive ve                                                      | rb phra       | ase)        |                  |                  |                  |                 |
|           | =>                                                      | (article             | adjective                                                          | noun)         |             | <u>transitiv</u> | e verb phr       | ase              |                 |
|           | =>                                                      | article              | adjective                                                          | noun          |             | (transiti        | ve verb          | noun phrase      | <u>e)</u>       |
|           | =>                                                      | article              | <u>adjective</u>                                                   | noun          |             | <u>transitiv</u> | e verb           | ( <u>article</u> | <u>noun</u> )   |
|           | =>                                                      | The                  | happy                                                              | tortois       | е           | passes           |                  | the              | hare            |
|           | E.g. 4:                                                 | <u>sentence</u>      |                                                                    |               |             |                  |                  |                  |                 |
|           | =>                                                      | ( <u>noun phrase</u> | transitive ve                                                      | rb phra       | ase)        |                  |                  |                  |                 |
|           | =>                                                      | (article             | noun) <u>transitive verb phrase</u>                                |               |             |                  |                  |                  |                 |
|           | =>                                                      | article              | noun                                                               | (trans        | itive v     | erb              | noun phra        | use)             |                 |
|           | =>                                                      | article              | <u>noun</u>                                                        | <u>transi</u> | tive ve     | <u>rb</u>        | ( <u>article</u> | <u>noun</u> )    |                 |
|           | =>                                                      | The                  | hare                                                               | passes        |             |                  | the              | tortoise         |                 |
|           | E.g. 5:                                                 | <u>sentence</u>      |                                                                    |               |             |                  |                  |                  |                 |
|           | =>                                                      | ( <u>noun phrase</u> | transitive ve                                                      | rb phra       | ise)        |                  |                  |                  |                 |
|           | =>                                                      | (article             | noun)                                                              | tr            | ansitiv     | ve verb pł       | irase            |                  |                 |
|           | =>                                                      | article              | noun                                                               | (t            | ransiti     | ve verb          | <u>noun ph</u>   | nrase)           |                 |

|                 | =><br>=>                                                                                                                                                                                                                                                                                                                    | <u>article</u><br>The                                                                                            | <u>noun</u><br>tortoise                                                                                                                      | <u>transitive verb</u><br>passes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( <u>article</u><br>the                                                                                | <u>adjective</u><br>happy                                                        | <u>noun</u> )<br>hare                                            |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Question:<br>a. | Let $G = (V, T, S, P)$ be the phrase-structure grammar with $V = \{0, 1, A, S\}$ , $T = \{0, 1\}$ , and set of productions $P$ consisting of $S \rightarrow S1$ , $S \rightarrow 0A00$ , $A \rightarrow 0A$ , and $A \rightarrow 11$ . [Chapter 12.1 Review]<br>Show that 001100 belongs to the language generated by $G$ . |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                  |                                                                  |  |
| Answer:         | It suffic                                                                                                                                                                                                                                                                                                                   | es to give a deri                                                                                                | Evation of this stri $S \to S1 \to 0A$                                                                                                       | ng. We write the dependence of $001 \rightarrow 00A001 \rightarrow 00A001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rivation in th                                                                                         | e obvious way                                                                    | 7.                                                               |  |
| b.              | Show th                                                                                                                                                                                                                                                                                                                     | nat 1010 does n                                                                                                  | ot belong to the la                                                                                                                          | anguage generated b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y G.                                                                                                   |                                                                                  |                                                                  |  |
| Answer:         | Every p<br>belongi<br>which s                                                                                                                                                                                                                                                                                               | roduction resul<br>ng to the langı<br>tarts with a 1 ca                                                          | ts in a string that<br>1age generated by<br>an not be generate                                                                               | starts in <i>S</i> , or 0. <i>S</i> e<br>y <i>G</i> , therefore, have<br>ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eventually sta<br>to start wit                                                                         | rts with 0.  T<br>h 0.   The giv                                                 | he strings<br>en string,                                         |  |
| с.              | What is                                                                                                                                                                                                                                                                                                                     | the language ge                                                                                                  | enerated by <i>G</i> ?                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                  |                                                                  |  |
| Answer:         | Notice $S \rightarrow S1$ .<br>We can<br>end up $S$<br><i>A</i> disapp<br>that car                                                                                                                                                                                                                                          | that we can hav<br>. Eventually the<br>then have as m<br>with at least on<br>pears only upon<br>n be expressed a | we any number of<br>S must turn into<br>hany 0's as we like<br>e more 0 (and the<br>h using $A \rightarrow 11$ .<br>$S \{0^m 11001^n   m \}$ | 1's at the end of the odd of the odd of the odd of the product of | e string by it<br>three 0's mus<br>action $A \rightarrow 0A$<br>east four 0's).<br>herated by <i>G</i> | erating the p<br>et come befor<br>4 repeatedly.<br>In the middl<br>is the set of | roduction<br>e the one.<br>We must<br>e of zeros,<br>all strings |  |
| Question:       | Let $G$ be<br>$S \rightarrow pS$<br>12.1 Re                                                                                                                                                                                                                                                                                 | e the grammar<br>$r, S \rightarrow rqS, S -$<br>view]                                                            | with $V = \{p, q, r \in rr, and S \rightarrow pqr$                                                                                           | $\{r, S\}; T = \{p, q, r\}; s$<br>r. Construct derive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tarting symb<br>ation trees f                                                                          | ool S; and pr<br>or <i>rqppqrr</i> .                                             | oductions<br>[Chapter                                            |  |
| Answer:         | If we lo<br>since th<br>Finally,                                                                                                                                                                                                                                                                                            | ok at the begin<br>e remainder of<br>we can use the                                                              | aning of the strin<br>the string (after t<br>rule $S \rightarrow pqr$ . We<br>S<br>/  <br>r q<br>p                                           | g, we see that we can<br>he initial $rq$ ) starts<br>therefore obtain th<br>S<br>/   \<br>S r<br>/   \<br>q r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | an use the ru<br>with $p$ , we car<br>e tree shown                                                     | le $S \rightarrow rqS$ finds the rule below.                                     | rst. Then $S \rightarrow pSr$ .                                  |  |
|                 |                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                  |                                                                  |  |

Question:Find a phrase-structure grammar for each of these languages [Chapter 12.1 Review]a.the set consisting of the bit strings 10, or  $0^n 10$ , where n > 0Answer:The set of bit strings is actually  $0^n 10$ , where  $n \ge 0$ . The grammar can be expressed as,<br/> $S \rightarrow 10$ <br/> $S \rightarrow 0S$ 

**b.** the set of bit strings consisting of an even number of 0's following a leading final 1.

Answer: The set of bit string can be written as  $1(00)^n$ , where  $n \ge 0$ . The grammar can be expressed as  $S \rightarrow 1A$   $A \rightarrow 00A$  $A \rightarrow \lambda$ 

**Question:** Give the state table for the finite-state machines with the state diagram as shown below. [Chapter 12.2 Review]



Answer:

Textbook's way:

|                | f                     | c                     | g    |    |  |
|----------------|-----------------------|-----------------------|------|----|--|
| State          | Inp                   | out                   | Inpu | ıt |  |
|                | 0                     | 1                     | 0    | 1  |  |
| S <sub>0</sub> | <i>S</i> <sub>1</sub> | S <sub>3</sub>        | 1    | 0  |  |
| $S_1$          | $S_3$                 | <i>S</i> <sub>1</sub> | 0    | 0  |  |
| $S_2$          | $S_3$                 | <i>S</i> <sub>1</sub> | 0    | 1  |  |
| S <sub>3</sub> | <i>S</i> <sub>2</sub> | S <sub>3</sub>        | 1    | 0  |  |

Lecture notes' way:

| Stata                 | Input                     |                           |  |  |
|-----------------------|---------------------------|---------------------------|--|--|
| State                 | 0                         | 1                         |  |  |
| So                    | <i>S</i> <sub>1</sub> , 1 | <i>S</i> <sub>3</sub> , 0 |  |  |
| <i>S</i> <sub>1</sub> | <i>S</i> <sub>3</sub> , 0 | <i>S</i> <sub>1</sub> , 0 |  |  |
| <i>S</i> <sub>2</sub> | <i>S</i> <sub>3</sub> , 0 | <i>S</i> <sub>1</sub> , 1 |  |  |
| $S_3$                 | <i>S</i> <sub>2</sub> , 1 | <i>S</i> <sub>3</sub> , 0 |  |  |

## **Question:** Solve the two problems based on the following state table for a finite-state machine. [Chapter 12.2 Review]

|                | f                     | 2     | g    |    |  |
|----------------|-----------------------|-------|------|----|--|
| State          | Inp                   | out   | Inpu | ıt |  |
|                | 0                     | 1     | 0    | 1  |  |
| S <sub>0</sub> | <i>S</i> <sub>1</sub> | $S_2$ | 1    | 0  |  |
| $S_1$          | S <sub>3</sub>        | $S_1$ | 0    | 0  |  |
| $S_2$          | $S_0$                 | $S_2$ | 0    | 0  |  |
| $S_3$          | $S_2$                 | $S_0$ | 1    | 1  |  |

**a.** Find the state diagram to represent this finite-state machine.

| Answer: | The state diagram corresponds to the given state table is shown below. |  |  |
|---------|------------------------------------------------------------------------|--|--|
|         | $-Start + S_{0} = 0,1 + S_{1} = 1,0$                                   |  |  |

**b.** Find the output generated from the input string 0110 for the finite-state machine with the state diagram as below.

**Answer:** We follow the steps of each token of the input bit string gets consumed by the state machine.





| Question: | Determine whether the string $10101000$ is in each of these sets. [Chapter 12.3 Revierw] |
|-----------|------------------------------------------------------------------------------------------|
| a.        | {101}*                                                                                   |
| Answer:   | No. This set of strings need to end with a 1, but our string ends with an 0.             |
| b.        | {01}*{0}*                                                                                |
| Answer:   | Yes. Our string is $\{01\}^3\{0\}^2$ .                                                   |
|           |                                                                                          |

**Question:** Find the language recognized by the given deterministic finite-state automaton. [6 pts]



**Answer:** Since state  $S_0$  is final, the empty string is accepted. Then let's do it little by little.



through this path we have  $\{10 \mid 11\}^*$ 



through this path we have  $\{0\}\{1\}^*\{0\}\{0,1\}^*$ 

Therefore sum them together, we have  $\{\lambda\} \cup \{10 \mid 11\}^* \cup \{0\}\{1\}^*\{0\}\{0,1\}^*$ . The first term apparently can be omitted because it's covered in the first term. So the final solutions is  $\{10 \mid 11\}^* \cup \{0\}\{1\}^*\{0\}\{0,1\}^*$ .

**Question:** Construct a deterministic finite-state automaton that recognizes the set of all bit strings that starts with a 0, and followed by at least one 1. [Chapter 12.3 Review]

**Answer:** firstly, we would draw out the paths that the language defines. All accepted sentences are included in the automaton below:



Then we would take the unaccepted paths into consideration. All alphabet characters need to be covered, so we introduce paths that lead to unaccepted state.



As we can see, the state  $S_3$  does not have any path to go to the final accepting states/state, which is  $S_2$  in this case. So, the paths go into  $S_3$  "dead ends".