TA: Jade Cheng ICS 312 Homework Solution #1 August 26, 2009

Exercise 1.2

Question:	Convert to binar	y: 2483 _d , 3 <i>E</i> 8A _h			
Answer:	2483/2 1241/2 620/2 310/2 155/2 77/2 38/2 19/2 9/2 4/2 2/2 1/2 $3E8A_{a} = 00111$	$= 1241 + = 620 + = 310 + = 155 + = 77 + = 38 + = 19 + = 9 + = 4 + = 2 + = 1 + = 0 + 1110 1000 1010_{b}$	1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	⇒	$2483_d = 1001\ 1011\ 0011_b$
Question:	Convert to decin	nal: 10 1100 011	1 _b , 3E8A	h_h	
Answer:	0010 1100 011	$1_b = 1 \cdot 2^6$ $= 512$ $= 711_d$	9 + 1 · 2 ⁷ + 128 +	′ + 1 · 2 ⁶ 64 + 4 +	$+ 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$ + 2 + 1
	$3E8A_h = 3 \cdot 16^3$ = 12288 = 16010	$3^{3} + 14 \cdot 16^{2} + 8 \cdot 3^{3} + 3584 + 128 + 3584 + 128 + 3584 + 128 + 3584 + 128 + 3584 + 128 + 35844 + 3584 + 35844 + 35844 + 35844 + 3584 + 3584 + 3584 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35844 + 35846 + 35864 + 35864 + 35864 + 35864 + 35864 + 35864 + 35864 + 35864 + 35864644 + 3586464 + 35864 + 3586464 + 35864 + 35864 + 35846464 + 35844 + $	16 ¹ + 1 ⊦ 10	0 · 16 ⁰	
	10010	u			

Question: Perform the following additions in binary:

Answer:

1101 0101 _b	1001 1111 _b
$+ 111 0011_{b}$	$+ 100001_b$
1 0100 1000 _b	1100 0000 _b

Question:	Perform the following additions in hex:	:	
Answer:			
	9 <i>B</i> 34 _{<i>h</i>}		
	$+5AE6_h$		
	F61A _h	-	

Exercise 1.3

Question:	Convert the following 8-bit binary numbers to decimal			
Answer:	Assuming that they are signed 2's complement numbers:			
	$1110\ 1011_b = -(2's\ complement\ of\ 0001\ 0101_b) = -21$			
	$1000\ 0000_b = -(2's\ complement\ of\ 1000\ 0000_b) = -128$			
	$0100\ 0101_b = 69$			
	Assuming that the numbers are unsigned:			
	$1110\ 1011_b = 2^7 + 2^6 + 2^5 + 2^3 + 2^1 + 2^0 = 235$			
	$1000\ 0000_b = 2^7 = 128$			
	$0100\ 0101_b = 2^6 + 2^2 + 2^0 = 69$			

Question:	Convert the following 8-bit hex numbers to decimal
Answer:	Assuming that they are signed 2's complement numbers:
	$FF_h = -(2's \text{ complement of } 01_h) = -1$
	$F0_h = -(2's \text{ complement of } 10_h) = -16$

Assuming that the numbers are unsigned:

$$FF_h = 15 \cdot 16^1 + 15 \cdot 16^0 = 255$$
$$F0_h = 15 \cdot 16^1 + 0 \cdot 16^0 = 240$$

Question:Do the following addition exercises by translating the numbers into 8-bit 2's complement binary
numbers, performing the arithmetic, and translating the result back into a decimal number.
Indicate where overflow occurs and why, based on the binary arithmetic.

Answer:				
47:	0010 1111 _b	47:	0010 1111 _b	
38:	0010 0110 _b	-38:	1101 1010 _b	
	0101 0101 _b		1 0000 1001 _b	
	\Downarrow		↓	
	48 + 38 = 85		47 + (-38) = 9	
47	1101 0001	47	0010 1111	
-4/:	1101 0001 _b	47:	0010 1111 _b	
-38:	1101 1010 _b	88:	0101 1000 _b	
	110101011_{b}		$1000\ 0111_{b}$	
	↓ ↓		↓	
-(2's c	omplement of 1010 1011 _b)	-(2's cos)	mplement of 1000 0111 _b)	
= -(01	01 0101 _b)	= -(011)	1 1001 _b)	
= -85		= -120	Overflor	w
-47:	11010001_b	47:	0010 1111 _b	
88:	0101 1000 _b	-88:	1010 1000 _b	
	0101 1000 _b		$1101\ 0111_{h}$	
	↓ ↓		↓	
	-47 + 88 = 41	-(2's cos) = $-(001)$	mplement of 1101 0111 _b) 0 1001 _b)	
		= -41		

Question: Give the 16-bit 2's complement form of the following 8-bit 2's complement numbers.

Answer: $94_h = FF94_h$ because 9 > 8, this is a negative number, the leading bits need to be *F*'s. $FF_h = FFFF_h$ because F > 8, this is a negative number, the leading bits need to be *F*'s.

Question:	Which of the following 16-bit 2's complement their value?	: numbers can be shorten	ed to 8-bit and maintain
Answer:	$FF94_h = 94_h$ as we've shown above. $FF3C_h \neq 3C_h$ because $FF3C_h$ is a negative number of the second	nber while $3C_h$ is a positiv	ze number.
Question:	A positive binary number is even precisely complement number even?	when its last digit is 0.	When is a negative 2's
Answer:	A negative 2's complement number is even pre	cisely when its last digit is	s 0 as well.
	<u>Proof part 1</u> : Assume there exists a 2's complem can, therefore, express this number as	1ent negative even numbe	er which ends with 1. We
	$1 \cdots 1 = -(2's cc)$ $= -(0 \cdots 1)$	mplement of 1…1))	
	≠ even		
	Since we know precisely that a positive binary	number is not even when	it ends with a 1. This is
	a conflict with our assumption. Our assumption	on is, therefore, wrong.	
	<u><i>Proof part 2</i></u> : Assume there exists a 2's complem can, therefore, express this number as	1ent negative odd number	which ends with 0. We
	$1\cdots 0 = -(2's\ cc$	mplement of $1 \cdots 0$)	
	= -(either)	r 0…0 or 1…0)	
	= even		
	Since we know precisely that a positive binary conflict with our assumption. Our assumption	number is even when it er 1 is, therefore, wrong.	nds with a 0. This is a
Question:	There is nothing particularly magical about	2's complement in bina	ry, other than that the
	computations are particularly easy in base 2.	We could also do 10's co	omplement arithmetic in
	normal decimal numbers. We can represent	negative numbers as the	10's complement of the
	corresponding positive number. Do the arit	hmetic in problem 3 in .	3 digit 10's complement
Answer:			
	47: 047 _{10's}	47: 047	7 _{10's}
	38: 038 _{10's}	-38: 962	2 _{10's}
	08510/5	1 009	$\frac{1}{10's}$
	↓	↓	10.5
	48 + 38 = 85	47 + (-38)	= 9

-47:	953 _{10's}	47:	047 _{10's}	
-38:	962 _{10's}	88:	088 _{10's}	
-	1 915 _{10's}		135 _{10's}	
	\Downarrow		Û	
-(10's c	omplement of 915 _{10's})		47 + 88 = 135	
= -(085	_{10's})			
= -85				
-47:	953 _{10's}	47:	047 _{10's}	
88:	088 _{10's}	-88:	912 _{10's}	
-	1 041 _{10's}		959 _{10's}	
	\Downarrow		Ų	
-47 + 88 = 41		$-(10's \ complement \ of \ 959_{10's})$		
		$= -(041_{10})$	_{0's})	
		= -41		