TA: Jade Cheng ICS 312 Homework Solution #5 Due Date: September 10, 2009

Exercise #10.1

Question:	If we have defined					
	Msg	db	'Hello, friend	ds!	′, 13, 10, `\$′	
	What is displayed	d by				
Answer:		_PutStr	Msg	; `	Hello, friends!'	
		_PutStr	Msg + 7	; `	friends!'	
		mov	Msg, `M'			
		mov	Msg + 5, `w'			
		_PutStr	Msg	; `	Mellow friends!'	

Exercise #10.2

Question:	Figure out what each of the following code fragments does. You can trace each fragment using
	the data definitions in Exercise 1, but you should give a general description of what is being
	accomplished, not what is happening to the particular data above.

а.		sub	ax, ax
		mov	bx, 10
Ν	Mystery1:		
		add	ax, [WArray + bx]
		sub	bx, 2
		jge	Mysteryl

Answer:This program loops from the last element of WArray to the first element of this array,
computes the summation of the elements, and stores it in the register ax.

b. mov ax, 1 mov bx, 0

		mov	cs, 6
	Mystery3:		
		mov	[WArray + bx], ax
		add	bx, 2
		inc	ax
		dec	СХ
		jnz	Mystery3
Answer:	This program loops	from the beg	inning of WArray to the end of this array, and re assign every
	element from 1 to 6	. The WArra	y array becomes 1, 2, 3, 4, 5, 6 and the end of the execution.
C		mov	by 0
C .		mou	
	March and 4	lliov	CX, 11
	Mystery4.	CITE	
		Cillp	[WAIIay + DX], 0
] _	
		cmp	[CArray + DX], '9'
		jle	Done
	M4:	inc	xd
		dec	CX
	_	jnz	Mystery4
	Done:		
Answer:	This program loops	from the be	eginning of CArray until it reaches '8' in this array, and it
	terminates.		
Question:	Rewrite each of the	mystery prog	grams in Exercise 2 using the pointer method ($[bx]$) instead of
	the subscript metho	d([WArray	+ bx] or [CArray + bx] indexing).
а.		sub	ax, ax
		mov	bx, 10
	Mystery1:		
		add	ax, [WArray + bx]
		sub	bx, 2
		jge	Mysteryl
Answer:		sub	ax, ax
		mov	bx, offset WArray + 10
	Mystery1:		
		add	ax, [bx]
		sub	bx, 2
		100	Mysteryl

Ь.	Mystery3:	mov mov mov add inc dec jnz	<pre>ax, 1 bx, 0 cs, 6 [WArray + bx], ax bx, 2 ax cx Mystery3</pre>
Answer:	Mystery3:	mov mov mov add inc dec jnz	<pre>ax, 1 bx, offset WArray cs, 6 [bx], ax bx, 2 ax cx Mystery3</pre>
C.	Mystery4: M4: Done:	mov mov cmp jl cmp jle inc dec jnz	<pre>bx, 0 cx, 11 [WArray + bx], `0' M4 [CArray + bx], `9' Done bx cx Mystery4</pre>
Answer:	Mystery4: M4: Done:	mov mov cmp jl cmp jle inc dec jnz	<pre>bx, offset CArray cx, 11 [bx], `0' M4 [bx], `9' Done bx cx Mystery4</pre>

Question: Suppose that A, B and C are arrays of 100 words.

a. Write code to place in ax the smallest integer in A. Use the pointer method ([bx] indexing) as opposed to the subscript method.

Answer:	The pointer method:			
		mov	bx,	offset A + 2
		mov	ax,	[A]
		mov	cx,	100
	Program:			
		cmp	ax,	[bx]
		jle	Inci	rement
		mov	ax,	[bx]
	Increment:			
		add	bx,	2
		dec	CX	
		jnz	Prog	gram
	The subscript method:			
		mov	bx,	offset A + 2
		mov	ax,	[A]
		mov	cx,	100
	Program:			
		cmp	ax,	[bx]
		jle	Inci	rement
		mov	ax,	[bx]
	Increment:			
		add	bx,	2
		dec	CX	
		jnz	Prog	gram

b. Write code to set all entries in A to 1. Use the pointer method.

Answer:	<u>The pointer method:</u>		
		mov	bx, offset A
		mov	cx, 100
	Program:		
		mov	[bx], 1
		add	bx, 2
		dec	CX
		jnz	Program

Question: Suppose that we have recorded the tab stops we wish to use in byte array TabStop, with the property that TabStop[0] < TabStop[1] <···< TabStop[N], which is the highest set tab stop (N is a word variable). If COL is the byte variable containing the current position of the cursor and a tab is entered, the new value of COL is the smallest TabStop[I] which is greater than COL. If no such value exists, the new value of COL is COL + 1. Write assembler code to compute this new value of COL.

Answer:		mov	cx, N
		mov	bx, offset TabStop
	Program:		
		cmp	[bx], COL
		jg	Found
		inc	bx
		dec	CX
		jnz	Program
		inc	COL
		jmp	Done
	Found:	mov	COL, [bx]
	Done:		